已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2016年高考数学文试题分类汇编解析几何一、选择题1、(2016年北京高考)圆(x+1)2+y2=2的圆心到直线y=x+3的距离为(A)1 (B)2 (C) (D)2【答案】C2、(2016年山东高考)已知圆M:截直线所得线段的长度是,则圆M与圆N:的位置关系是(A)内切(B)相交(C)外切(D)相离【答案】B3、(2016年四川高考)抛物线y2=4x的焦点坐标是(A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0)【答案】D4、(2016年天津高考)已知双曲线的焦距为,且双曲线的一条渐近线与直线垂直,则双曲线的方程为(A) (B)(C) (D)【答案】A5、(2016年全国I卷高考)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为(A)(B)(C)(D)【答案】B6、(2016年全国II卷高考)设F为抛物线C:y2=4x的焦点,曲线y=(k0)与C交于点P,PFx轴,则k=( )(A) (B)1 (C) (D)2【答案】D7、(2016年全国III卷高考)已知O为坐标原点,F是椭圆C:的左焦点,A,B分别为C的左,右顶点.P为C上一点,且轴.过点A的直线l与线段交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为(A)(B)(C)(D)【答案】A二、填空题1、(2016年北京高考)已知双曲线 (a0,b0)的一条渐近线为2x+y=0,一个焦点为( ,0),则a=_;b=_.【答案】2、(2016年江苏省高考)在平面直角坐标系xOy中,双曲线的焦距是_. 【答案】3、(2016年山东高考)已知双曲线E:=1(a0,b0)矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是_【答案】 4、(2016年上海高考)已知平行直线,则的距离_【答案】5、(2016年天津高考)已知圆C的圆心在x轴的正半轴上,点在圆C上,且圆心到直线的距离为,则圆C的方程为_【答案】6、(2016年全国I卷高考)设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若,则圆C的面积为 .【答案】7、(2016年全国III卷高考)已知直线:与圆交于两点,过分别作的垂线与轴交于两点,则_.【答案】48、(2016年浙江高考)已知,方程表示圆,则圆心坐标是_,半径是_.【答案】;5三、解答题1、(2016年北京高考)已知椭圆C:过点A(2,0),B(0,1)两点.(I)求椭圆C的方程及离心率;()设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.解:(I)由题意得,所以椭圆的方程为又,所以离心率(II)设(,),则又,所以,直线的方程为令,得,从而直线的方程为令,得,从而所以四边形的面积从而四边形的面积为定值2、(2016年江苏省高考)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:及其上一点A(2,4)(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,o)满足:存在圆M上的两点P和Q,使得,求实数t的取值范围。解:圆M的标准方程为,所以圆心M(6,7),半径为5,.(1)由圆心N在直线x=6上,可设.因为圆N与x轴相切,与圆M外切,所以,于是圆N的半径为,从而,解得.因此,圆N的标准方程为.(2)因为直线OA,所以直线l的斜率为.设直线l的方程为y=2x+m,即2x-y+m=0,则圆心M到直线l的距离 因为 而 所以,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.(3)设 因为,所以 因为点Q在圆M上,所以 .将代入,得.于是点既在圆M上,又在圆上,从而圆与圆有公共点,所以 解得.因此,实数t的取值范围是.3、(2016年山东高考)已知椭圆C:(ab0)的长轴长为4,焦距为2.(I)求椭圆C的方程;()过动点M(0,m)(m0)的直线交x轴与点N,交C于点A,P(P在第一象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长线QM交C于点B.(i)设直线PM、QM的斜率分别为k、k,证明为定值.(ii)求直线AB的斜率的最小值.解析:()设椭圆的半焦距为c,由题意知,所以,所以椭圆C的方程为.()(i)设,由M(0,m),可得 所以 直线PM的斜率 ,直线QM的斜率.此时,所以为定值-3.(ii)设,直线PA的方程为y=kx+m,直线QB的方程为y=-3kx+m.联立 ,整理得.由可得 ,所以,同理.所以, ,所以 由,可知k0,所以 ,等号当且仅当时取得.此时,即,符号题意.所以直线AB 的斜率的最小值为 .4、(2016年上海高考)双曲线的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.(1)若l的倾斜角为 ,是等边三角形,求双曲线的渐近线方程;(2)设,若l的斜率存在,且|AB|=4,求l的斜率.解析:(1)设由题意,因为是等边三角形,所以,即,解得故双曲线的渐近线方程为(2)由已知,设,直线由,得因为与双曲线交于两点,所以,且由,得,故,解得,故的斜率为5、(2016年四川高考)已知椭圆E:+=1(ab0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P(,)在椭圆E上。()求椭圆E的方程;()设不过原点O且斜率为的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,证明:MAMB=MCMD 解:(I)由已知,a=2b.又椭圆过点,故,解得.所以椭圆E的方程是.(II)设直线l的方程为, ,由方程组 得,方程的判别式为,由,即,解得.由得.所以M点坐标为,直线OM方程为,由方程组得.所以.又.所以.6、(2016年天津高考)设椭圆()的右焦点为,右顶点为,已知,其中为原点,为椭圆的离心率.()求椭圆的方程;()设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率.解析:(1)解:设,由,即,可得,又,所以,因此,所以椭圆的方程为.(2)设直线的斜率为,则直线的方程为,设,由方程组 消去,整理得,解得或,由题意得,从而,由(1)知,设,有,由,得,所以,解得,因此直线的方程为,设,由方程组 消去,得,在中,即,化简得,即,解得或,所以直线的斜率为或.7、(2016年全国I卷高考)在直角坐标系中,直线l:y=t(t0)交y轴于点M,交抛物线C:于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(I)求;(II)除H以外,直线MH与C是否有其它公共点?说明理由.【解析】()由已知可得,又与关于点对称,故 直线的方程为,代入,得:解得:,是的中点,即()直线与曲线除外没有其它公共点理由如下:直线的方程为,即,代入,得,解得,即直线与只有一个公共点,所以除外没有其它公共点8、(2016年全国II卷高考)已知是椭圆:的左顶点,斜率为的直线交与,两点,点在上,.()当时,求的面积;()当时,证明:.解析:()设,则由题意知.由已知及椭圆的对称性知,直线的倾斜角为,又,因此直线的方程为.将代入得,解得或,所以.因此的面积.(2) 将直线的方程代入得.由得,故.由题设,直线的方程为,故同理可得.由得,即.设,则是的零点,所以在单调递增,又,因此在有唯一的零点,且零点在内,所以.9、(2016年全国III卷高考)已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点(I)若在线段上,是的中点,证明;(II)若的面积是的面积的两倍,求中点的轨迹方程.()设与轴的交点为,则.由题设可得,所以(舍去),.设满足条件的的中点为.当与轴不垂直时,由可得.而,所以.当与轴垂直时,与重合.所以,所求轨迹方程为. .12分10、(2016年浙江高考)如图,设抛物线的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1.(I)求p的值;(II)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M.求M的横坐标的取值范围.解析:()由题意可得抛物线上点A到焦点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论