




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ZnOGaSiO2Si模板法制备用于CO传感器的纳米线ZnO Sensors andActuators B125 (xx)498503ZnO nanowire-based CO sensors preparedonpatterned ZnO:Ga/SiO2/Si templatesTing-Jen Hsueha,Yi-WenChen b,Shoou-Jinn Changa,Sea-Fue Wangb,Cheng-Liang Hsuc,Yan-Ru Lind,Tzer-Shen Lind,I-Cherng Chene,?abInstitute ofMicroelectronics&Department ofElectrical Engineering,National Cheng Kung University,Tainan70101,Taiwan,ROCDepartment of Materials and Mineral Resources Engineering,National Taipei University of Technology,Taipei10608,Taiwan,ROCcDepartment ofElectronic Engineering,National University of Tainan,Tainan700,Taiwan,ROCdIndustrial TechnologyResearch Institute,Chutung,Hsinchu31040,Taiwan,ROCeMicro SystemsTechnology Center,Industrial TechnologyResearch InstituteSouth,Tainan709,Taiwan,ROCReceived23Novemberxx;received inrevised form24Februaryxx;aepted26FebruaryxxAvailable online12MarchxxAbstractThis investigationdiscusses the growth of high-density singlecrystalline ZnO nanowires onpatterned ZnO:Ga/SiO2/Si templatesand thefabrication of ZnO nanowire-based CO gas sensors.The ZnO nanowires grown on a sputtered ZnO:Ga layer were verticallyaligned whilethosegrown directlyon aSiO2layer were randomly oriented.Additionally,the average length of the nanowires increased and the average diameter ofthe nanowires decreasedas the amount of zinc metal powder in the quartz tube wasincreased from0.1to0.25g.As the amount of zinc metalpowerincreased to0.3g,the nanowiresbecame markedlyshorter.Measuring the resistivity changeof the samples at320?C indicatedthat thesensor responses(R a?R b)/R a)100%,R ais the resistivity in air andR bin CO gas)of the ZnO nanowireCO sensorsprepared with0.1,0.15,0.2,0.25and0.3g zinc metal powderwere5%,8%,35%,57%and29%,respectively.?xxElsevier B.V.All rightsreserved.Keywords:ZnO nanowire;CO gas sensor;CL;VLS1.IntroductionAs aninteresting chemicallyand thermallystable n-typesemiconductor,ZnO has a largeexciton bindingenergy of60meV anda largebandgap energyof3.37eV atroom tem-perature1.With theseproperties,ZnO iswidely appliedinvarious applications,such aspyroelectric devices2,transistors3,piezoelectric devices,mechanical devices4,5and surfaceacoustic wave devices6.ZnO isalso sensitiveto toxicand -bustible gases7.Toour knowledge,ZnO gas sensors ofvariousforms,including thick f i lms8,thin f i lms9,heterojunc-tions10,nanoparticles11and nanowires12,have allbeendemonstrated.Oxygen-related gas sensing generallyinvolvesthe chemisorptionof oxygenon theoxide surface,followed bychargetransfer during the reactionbetween chemisorbedoxy-gen andtarget gasmolecules,changing thesurface resistance?of the sensor element13.Aordingly,one-dimensional(1D)ZnO nanowireshave attractedconsiderable attentionsince theyprovidemuch largerlength-to-diameter andsurface-to-volumeratios thanbulk ZnOand ZnOf i lms.One-dimensional ZnO nanowires can be synthesizedby var-ious methods1420.We recentlyreported on the growth ofZnO nanowires on ZnO:Ga/glass templatesby theself-catalyzedvaporliquidsolid(VLS)method21.This studydiscussesthe growth ofhigh-density singlecrystalline ZnO nanowireson patterned ZnO:Ga/SiO2/Si templatesby the two-step oxygeninjectionmethod withoutcatalysts.Notably,various amounts ofZn powderwere usedduring growth.The sensingproperties ofthe ZnO nanowiresto carbonmonoxide(CO)gas willalso bediscussed.2.ExperimentsPrior to the growth of ZnO nanowires,an Sisubstrate wasthermallyoxidized toform a500nm-thick SiO2f i lm.A100nm-Corresponding author.Tel.:+88635915332;fax:+88635820386.E-mail address:EugeneChenitri.tw(I.-C.Chen).0925-4005/$see frontmatter?xxElsevier B.V.All rightsreserved.doi:10.1016/j.snb.xx.02.059T.-J.Hsueh etal./Sensors andActuators B125 (xx)498503499Fig.1.Schematic diagramof patternedZnO:Ga/SiO2/Si templates.thick Ga-doped ZnO thin f i lmwas subsequentlydeposited ontotheSiO2f i lm byRF magronsputtering.X-ray diffraction(XRD)demonstrated thatthe sputteredZnO:Ga f i lmwas ori-ented in the (002)direction.Four-point resistivitymeasurementindicated thatthe sheetresistance of the sputteredZnO:Ga f i lmwasaround200?/sq.Standard photolithographywas thenper-formed topartially etchaway the ZnO:Ga f i lmand def i heb-like pattern.During wetetching,the templatewas dippedin2%HCl for3min toremove theexposed ZnO:Ga.As shownin Fig.1,the etchingmask wasdesigned tomake thef i ngersof theb-like pattern10?m wideand80?m longwith aspacingof10?m.Two smallpieces ofglass were used tocoverthe two electrodes of the patternedZnO:Ga f i lmso thatno ZnOnanowiregrows in these regions22,23.Various amounts of99.9%pure zinc metal powder(0.1,0.15,0.2,0.25and0.3g)wereusedas theZn sourceto growZnO nanowires.As presentedin Fig.2,the growthwas performedin aquartz tubelocatedin ahorizontal furnace.The samplewas placedwith differentamountsof Zn powder ontoan aluminaboat,and insertedtheminto thequartz tube.The growth of ZnO nanowires wasdividedinto?two steps.The f i rststep wasto rampthe temperatureup at30C/min.Initially,only Argas was introduced at a f l owrateof54.4sm into the furnace.When the temperature reachedthemelting pointof Zn(420?C),theZn vapor pressureinsidethe furnace?increased rapidly.When thetemperature reached450C,the oxygengas waspoured into the chamberatafl owrate of0.8sm tostart thegrowthof ZnO nanowires.When thetemperaturereached700?C,thetemperatureramping waster-minated and the chambertemperature wasmaintained at700?Cto growthe ZnO nanowires continuously.The totalgrowthtime was40min.After growth,standard photolithographyandliftoff wereused todeposit Au/Pd(80%:20%)onto theelectrodeFig.2.Schematic illustrationof thesystem used to growZnO nanowires.regions toserve as the contactpads.The sampleswere thenther-mally annealedin Arambience at350?C for15min toform goodohmic contacts betweenAu/Pd and the underlyingZnO:Ga fi lm.A JEOLJSM-6500F fi eldemission scanningelectron micro-scope(FESEM)at5keV wasthen usedto characterizethestructures of the as-grown ZnO nanowires.Cathodolumines-cence(CL)was alsousedtoevaluate thequality of the depositedZnO nanowires.During CLmeasurements,the electronbeampower wasmaintained at0.405W(aelerated at5kV with anemission currentof81?A).The samplewas placedina sealedchamber andthe resistivity of the sample inair was measuredwith the twoelectrodesof thepatternedZnO:Ga fi lmat320?C tomeasuregassensingproperties of the nanowires.Then,500ppmCO gas was injectedinto thechamber andthe resistivityof thesamplewas measuredagain at320?C inthe presenceof COgas.3.Results anddiscussionFig.3(a)shows atop-view FESEMimage of the ZnOnanowires grown with0.25g zinc metal powder inside theFig.3.(a)Top-view FESEMimage of ZnO nanowires grown with0.25g zincmetal powderinside aquartz tube.The insetshows anenlarged imageof thissam-ple and(b)IV characteristics between thetwo neighboring electrodes,bridgedby the ZnO nanowires,measured inair.500T.-J.Hsueh etal./Sensors andActuators B125 (xx)498503Fig.4.Cross-sectional FESEMimages of ZnO nanowires grown with(a)0.1g,(b)0.15g,(c)0.2g,(d)0.25g and(e)0.3g zinc metal powderinsideaquartz tube.quartz tube.The insetof Fig.3(a)shows anenlarged imageofthis sample.Clearly,the ZnO nanowires were grown onboththe conductingZnO:Ga fi ngerregions andthe insulat-ing SiO2spacer regions.The ZnOnanowires grownon theZnO:Ga fingerregions werewell alignedinthevertical direction.The verticalnanowires areobserved inthese regionsbecausethey weregrown alongthe columnargrains underthe sputteredZnO:Ga fi lm22.In contrast,theZnOnanowires grownonSiO2spacer regionswere randomly oriented.Notably,these ran-domly oriented ZnOnanowiresprovide electricalpaths betweentheneighboring fi ngers.When theseZnOnanowires wereran-domlyoriented,thetwoelectrodes wereno longerelectricallyopen.Hence,theresistivityof thesample couldthus bedeter-mined byapplying aconstant voltageacross thetwo electrodesandmeasuring thecorresponding current.Fig.3(b)plots thecurrentvoltage(IV)characteristicsbetween thetwoneigh-boringelectrodesbridged bytheZnOnanowiresinair.Themeasured currentincreased linearlywith increasingthe appliedbias.Such linearbehavior revealsthat goodohmiontactswereformed betweenthe nanowiresandtheelectrodes.In thisstudy,ZnOnanowires weregrownwith variousamountsof zincmetal powder.Fig.4(a)(e)show thecross-sectional FESEMimages of theZnOnanowiresgrownwith0.1,0.15,0.2,0.25and0.3g zincmetal powderinside thequartztube,respectively.The fi vefigures showthat high-density verti-cal ZnOnanowiresweregrownon the conductingZnO:Ga fi ngerregionswhile randomly orientedZnOnanowiresweregrown ontheinsulating SiO2spacer regions.Given thesame growthtem-perature profi leand growthtime,however,the averagediameterand length of the nanowires variedsignif i cantly.Notably,thescale barsin Fig.4(a)and(e)differed fromthose in(b)(d).Fig.5summarizes the averagelengthand diameterof the ZnOnanowires prepared with differentamountsofZnpowder.Asshown inFig.5,theaveragelength of the nanowiresincreasedwhile theaveragediameterof thenanowires decreasedas theamount of zincmetal powderinthequartz tubewas increasedfrom0.1to0.25g.The exactreasons for these observationsarenot clearyet.As the amount of zincmetal powder increased from0.1to0.25g,the numberof zincvapor particleson topof theZnvapor sourceincreased,so thatlonger ZnOnanowires wereT.-J.Hsueh etal./Sensors andActuators B125 (xx)498503501Fig.5.Average lengthand diameterof ZnOnanowiresgrownon ZnO:Ga/SiO2/Si templateswith various amountsof zincmetal powder.formed.At thesame time,the amount of oxygenmolecules thatpassedthrough theZnvaporsource becamesmaller.Tseng etal.demonstrated thatthe diameteroftheZnOnanowires decreasedas theoxygen flowrate decreased24.We believethat asim-ilar phenomenonourred astheamountof zincmetal powderincreasedfrom0.1to0.25g.Thus,thinner ZnOnanowires wereformed.As theamountof zincmetal powder increased to0.3g,however,these nanowiresbecame signifi cantlyshorter,probablybecause ofthe def i ciencyof oxygenmolecules.Fig.6shows theroom temperatureCL spectraof ZnOnanowires prepared withvariousamountsofzincmetalpow-der.A clearsharp strongpeak locatedat approximately380nmwas observedfor allfive samples.This sharpCL peakoriginatesfrom thenear band-edge emissionsof ZnO25.Deep levelemission(green-yellow band)was observedasabroad peakforthese samples.This deeplevel emissionis relatedto thesinglyionized oxygen vacancy inZnO26.The electricalproperties ofoxidenanowires aregoverned byoxygenvacancy-related donorstates,aording tothe ionizationprocesses13:V oV o+e? (1)Fig.6.Room temperatureCL spectraof ZnOnanowiresprepared with variousamountsofzincmetal powder.Fig.7.Sensor responses of aZnOnanowire-based COgas sensor measured at320?C.V o+V o2+e? (2)where Vo+and Vo2+are thesingly anddoubly ionizedvacancies,respectively.The spectrainFig.6yield calculatedUV-to-visibleCL intensityratios of37,13,7.5,0.5and0.3for theZnOnanowires grownwith0.1,0.15,0.2,0.25and0.3g zincmetalpowder,respectively.These numberssuggest thatthe numberof oxygen vacancies increased with theamountofzincmetalpowder.This factcan againbe attributedtothedeficiency ofoxygenmolecules24.Fig.7shows thedetector responseoftheZnOnanowire-basedCO gas sensormeasuredat320?C.To makethese measure-ments,500ppm COgaswasintroduced intoasealedchamberand theresistivityofthesamplewasmeasuredboth inair(R a)and inCOgas(R b).The performanceofthe sensor wasmea-sured asthesensorresponse,defined by(R a?R b)/R a)100%.As theCOgaswasintroducedinto thechamber,theresistiv-ityofthesampledecreased exponentiallywithatime constantof6s.As showninFig.7,thesensorresponses oftheZnOnanowireCO sensorspreparedwith0.1,0.15,0.2,0.25,and0.3g zincmetalpowderwere5%,8%,35%,57%and29%,respectively.A possiblemechanism bywhich ZnOnanowiressense COgas isas follows.First,reactive oxygenspeciessuch asO2?,O2?and O?are adsorbedon theZnO sur-face atelevated temperatures.Notably,the chemisorbedoxygenspecies dependstrongly?onthetemperature.At temperaturesoflower than130C,?O2?is monlychemisorbed.Athigher temperatures,O isnormally chemisorbedwhile O2?is rapidly27.The reactionkiics isdescribed asfollows28:O2(gas)?O2(adsorbed) (3)O2(adsorbed)+e?O2? (4)O2?+e?2O? (5)Thus,the conductanceoftheZnOnanowiresincreases asthereducing gas(CO)is introducedintothetest chamberbecauseof theexchange ofelectrons betweenthe ionosorbedspecies andtheZnO itself.The reactionbetweenthereducing gas andthe502T.-J.Hsueh etal./Sensors andActuators B125 (xx)498503surface ofoxide sensorcanbedescribed byRef.29,R+O?(ads)?RO+e? (6)where Ris thereducing gas.Notably,this reactioninvolvesa changeof surfacestate charge.Aordingly,the responseofthe fabricatedZnOnanowireCOsensordepends stronglyonthe numberof oxygen vacanciesinthenanowiresand thelength-to-diameter ratio.Fig.6shows thatthe numberofoxy-genvacanciesincreased with theamountofzincmetal powerusedduringthegrowth.Thus,the increase in detectorsensorresponse with the massofzincmetal powerfrom0.1to0.25g isattributabletotheincreaseinthe numberof oxygenvacancies inthenanowires.However,the smallersensorresponseoftheZnOnanowires grownwith0.3g zincmetalpowderis attributabletothe smalllength-to-diameter ratioofthenanowires.Further-more,the responseand recoverytimes ofthe fabricatedsensorswere around20and60s,respectively.These valueswere sim-ilar tothose reportedfor ZnOthick film-based CO sensors30.4.ConclusionsIn summary,this investigationreports onthegrowthofhigh-density singlecrystalline ZnOnanowiresonpatternedZnO:Ga/SiO2/Si templatesandthefabricationofa ZnOnanowire-based COgas sensor.The ZnOnanowires grownonasputteredZnO:Ga layerwere verticallyaligned whilethosegrown directlyontheSiO2layerwererandomlyori-ented.The averagelengthofthenanowiresincreased whiletheaverage diameterofthenanowiresdecreasedastheamountof zincmetalpowderinthequartztubeincreasedfrom0.1to0.25g.The nanowiresbecame significantlyshorteras theamountofzincmetalpowder furtherincreasedto0.3g.Measuring theresistivity changeofthesamples at320?C yieldedsensorresponsesof5%,8%,35%,57%and29%for theZnOnanowireCOsensorspreparedwith0.1,0.15,0.2,0.25and0.3g zincmetalpowder,respec-tively.References1N.Kumar,A.Dorfman,J.Hahm,Fabrication ofoptically enhancedZnOnanorods andmicrorods usingnovel biocatalysts,J.Nanosci.Nanotechnol.5 (xx)19151918.2C.S.Wei,Y.Y.Lin,Y.C.Hu,C.W.Wu,C.K.Shih,C.T.Huang,S.H.Chang,Partial-electroded ZnOpyroelectric sensorsfor responsivityimprovement,Sens.Actuators A128 (xx)1824.3H.H.Hsieh,C.C.Wu,Scaling behaviorof ZnOtransparent thin-film tran-sistors,Appl.Phys.Lett.89 (xx),Art.no.041109.4H.Kind,H.Yang,B.Messer,M.Law,P.Yang,Nanowire ultravio-let photodetectorsand opticalswitches,Adv.Mater.14 (xx)158160.5H.J.Fan,W.Lee,R.Hauschild,M.Alexe,G.L.Rhun,R.Scholz,A.Dadgar,K.Nielsch,H.Kalt,A.Krost,M.Zacharias,U.Gosels,Template-assistedlarge-scale orderedarrays of ZnO pillarsfor opticaland piezoelectricappli-cations,Small2 (xx)561568.6J.Zhu,Y.Chen,G.Saraf,N.W.Emaoglu,Y.Lua,Voltage tunablesurfaceacousticwavephase shifterusing semiconducting/piezoelectricZnO duallayers grownon?-Al2O3,Appl.Phys.Lett.89 (xx),Art.no.103513.7S.K.Hazra,S.Basu,Hydrogen sensitivityofZnOpn homojunctions,Sens.Actuators B117 (xx)177182.8M.S.Wagh,G.H.Jain,D.R.Patil,S.A.Patil,L.A.Patil,Modif ied zincoxidethickfilmresistors asNH3gassensor,Sens.Actuators B115 (xx)128133.9J.Wollenstein,J.A.Plaza,C.Cane,Y.Min,H.Bottner,H.L.Tuller,Anovel singlechip thin film metaloxide array,Sens.Actuators B93 (xx)350355.10S.Mridha,D.Basak,Investigation ofa p-CuO/n-ZnO thin film heterojunc-tion forH2gas-sensor applications,Semicond.Sci.Technol.21 (xx)928932.11G.G.Huang,C.T.Wang,H.T.Tang,Y.S.Huang,J.Yang,ZnO nanoparticle-modif ied infraredinternal refl ectionelements forselective detectionofvolatile organiompounds,Anal.Chem.78 (xx)23972404.12Z.P.Sun,L.Liu,L.Zhang,D.Z.Jia,Rapid synthesisofZnOnano-rodsby one-step,room-temperature,solid-state reactionand theirgas-sensingproperties,Nanotechnology17 (xx)22662270.13P.Mitra,A.P.Chatterjee,H.S.Maiti,ZnOthinfilm sensor,Mater.Lett.35 (1998)3338.14Y.Li,G.S.Cheng,L.D.Zhang,Fabrication ofhighly orderedZnO nanowirearraysin anodicalumina membranes,J.Mater.Res.15 (2000)23052308.15Y.Li,G.W.Meng,L.D.Zhang,F.Phillipp,Ordered semiconductorZnOnanowire arraysand theirphotoluminescence properties,Appl.Phys.Lett.76 (2000)xxxx.16L.Vayssieres,Growth ofarrayed nanorodsand nanowiresofZnOfromaqueous solutions,Adv.Mater.15 (xx)464466.17Y.W.Heo,V.Varadarajan,M.Kaufman,K.Kim,D.P.Norton,F.Ren,P.H.Fleming,Site-specif ic growthofZnO nanorods usingcatalysis-driven molecular-beam epitaxy,Appl.Phys.Lett.81 (xx)30463048.18S.Muthukumar,H.F.Sheng,J.Zhong,Z.Zhang,N.W.Emanaetoglu,Y.Lu,Selective MOCVDgrowthofZnO nanotips,IEEE Trans.Nanotechnol.2 (xx)5054.19M.H.Huang,Y.Y.Wu,H.Feick,N.Tran,E.Weber,P.Yang,Catalyticgrowth ofzinc oxidenanowires byvapor transport,Adv.Mater.13 (2000)113116.20P.G.Ganesan,K.McGuire,H.Kim,N.Gothard,S.Mohan,A.M.Rao,G.Ramanath,ZnOnanowiresby pulsedlaser vaporization:synthesis andproperties,J.Nanosci.Nanotechnol.5 (xx)11251129.21T.J.Hsueh,S.J.Chang,Y.R.Lin,S.Y.Tsai,I.C.Chen,C.L.Hsu,A novelmethodfortheformation ofladder-like ZnOnanowires,Cryst.GrowthDes.6 (xx)12821284.22C.L.Hsu,S.J.Chang,Y.K.Tseng,C.J.Huang,H.M.Cheng,I.C.Chen,Vertical single-crystal ZnOnanowiresgrownon ZnO:Ga/glass templates,IEEE Trans.Nanotechnol.4 (xx)649654.23C.L.Hsu,S.J.Chang,H.C.Hung,Y.R.Lin,T.H.Lu,Y.K.Tseng,I.C.Chen,Selective growthof verticalZnOnanowireson ZnO:Ga/Si3N4/SiO2/Sitemplates,J.Vac.Sci.Technol.B23 (xx)22922296.24Y.K.Tseng,H.C.Hsu,W.F.Hsieh,K.S.Liu,I.C.Chen,Two-step oxy-gen injectionprocess forgrowing ZnOnanorods,J.Mater.Res.18 (xx)28372844.25T.Gao,T.H.Wang,Vapor phasegrowthofZnOnanorodnanobelt junctionarrays,J.Nanosci.Nanotechnol.5 (xx)11201124.26H.J.Egelhaaf,D.Oelkrug,Luminescence andnonradiative deactivationofexcited statesinv
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 谁的反应快课件
- 2025版科技研发合同委托管理协议
- 2025年度叉车安全检测与认证服务合同
- 2025年度高科技项目投资担保合同-高科技产业发展保障
- 2025年度智慧城市建设收购合同
- 2025版文化创意产业外包员工服务合同示范文本
- 2025版全新一致行动人协议-人工智能研发合作协议下载
- 2025版企业数字化转型与数字化转型咨询合同
- 2025版商业地产租赁合同租赁物使用限制合同
- 2025版大型钢铁企业高效铁矿粉直销服务合同
- 《现代汉语语法基础知识》公开课课件
- 关于运用监督执纪“第一种形态”的实施办法重点内容学习PPT课件(带内容)
- 苏教版《通用技术》必修一知识点复习课件
- 基本医疗保险职工参保信息变更登记表
- 中国石化加油站视觉形象(vi)标准手册
- 《室内空间设计》第二章课件
- 危大工程巡视检查记录
- Python基础课件(共282张PPT)
- DB44∕T 1836-2016 不锈钢美容工具
- 高一新生入学家长会发言稿
- (完整word版)门禁系统施工工艺
评论
0/150
提交评论