




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2006年高考数学试题分类汇编数列28(北京卷)在数列中,若是正整数,且,则称为“绝对差数列”.()举出一个前五项不为零的“绝对差数列”(只要求写出前十项);()若“绝对差数列”中,数列满足,分别判断当时,与的极限是否存在,如果存在,求出其极限值;()证明:任何“绝对差数列”中总含有无穷多个为零的项.解:(),(答案不惟一) ()因为在绝对差数列中,.所以自第 20 项开始,该数列是,即自第 20 项开始。每三个相邻的项周期地取值 3,0,3. 所以当时,的极限不存在. 当时, ,所以 ()证明:根据定义,数列必在有限项后出现零项.证明如下 假设中没有零项,由于,所以对于任意的n,都有,从而 当时, ; 当 时, 即的值要么比至少小1,要么比至少小1.令 则由于是确定的正整数,这样减少下去,必然存在某项 ,这与()矛盾. 从而必有零项. 若第一次出现的零项为第项,记,则自第项开始,每三个相邻的项周期地取值 0,, , 即 所以绝对差数列中有无穷多个为零的项.30。(福建卷)已知数列a满足a=1,a=2a+1(nN)()求数列a的通项公式;()若数列bn满足4k1-14k2-14k-1=(an+1)km(nN*),证明:bn是等差数列;()证明:(nN*).(I)解: 是以为首项,2为公比的等比数列。 即(II)证法一: 1 ,得 即,得即是等差数列。证法二:同证法一,得令得设下面用数学归纳法证明(1)当时,等式成立。(2)假设当时,那么这就是说,当时,等式也成立。根据(1)和(2),可知对任何都成立。是等差数列。(III)证明:35(湖南卷)在m(m2)个不同数的排列P1P2Pn中,若1ijm时PiPj(即前面某数大于后面某数),则称Pi与Pj构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为an,如排列21的逆序数,排列321的逆序数.()求a4、a5,并写出an的表达式;()令,证明,n=1,2,.解()由已知得, .()因为,所以. 又因为,所以 =. 综上,.36(江苏卷)设数列、满足:,(n=1,2,3,),证明为等差数列的充分必要条件是为等差数列且(n=1,2,3,)证明:必要性,设是an公差为d1的等差数列,则bn+1bn=(an+1an+3) (anan+2)= (an+1an) (an+3an+2)= d1 d1=0所以bnbn+1 ( n=1,2,3,)成立。又cn+1cn=(an+1an)+2 (an+2an+1)+3 (an+3an+2)= d1+2 d1 +3d1 =6d1(常数) ( n=1,2,3,)所以数列cn为等差数列。充分性: 设数列cn是公差为d2的等差数列,且bnbn+1 ( n=1,2,3,)cn=an+2an+1+3an+2 cn+2=an+2+2an+3+3an+4 -得cncn+2=(anan+2)+2 (an+1an+3)+3 (an+2an+4)=bn+2bn+1+3bn+2cncn+2=( cncn+1)+( cn+1cn+2)= 2 d2 bn+2bn+1+3bn+2=2 d2 从而有bn+1+2bn+2+3bn+3=2 d2 -得(bn+1bn)+2 (bn+2bn+1)+3 (bn+3bn+2)=0 bn+1bn0, bn+2bn+10 , bn+3bn+20, 由得bn+1bn=0 ( n=1,2,3,),由此不妨设bn=d3 ( n=1,2,3,)则anan+2= d3(常数). 由此cn=an+2an+1+3an+2= cn=4an+2an+13d3从而cn+1=4an+1+2an+25d3 , 两式相减得cn+1cn=2( an+1an) 2d3因此(常数) ( n=1,2,3,)所以数列an公差等差数列。37(江西卷)已知数列an满足:a1,且an(1) 求数列an的通项公式;(2) 证明:对于一切正整数n,不等式a1a2an2n!解:(1)将条件变为:1,因此1为一个等比数列,其首项为1,公比,从而1,据此得an(n1)1(2)证:据1得,a1a2an为证a1a2an2显然,左端每个因式都是正数,先证明,对每个nN*,有1()3用数学归纳法证明3式:(i) n1时,3式显然成立,(ii) 设nk时,3式成立,即1()则当nk1时,1()()1()()1()即当nk1时,3式也成立。故对一切nN*,3式都成立。利用3得,1()11故2式成立,从而结论成立。38(江西卷)已知各项均为正数的数列,满足:,且,(1)求数列的通项公式;(2)设,求,并确定最小正整数,使为整数解:(1)条件可化为,因此为一个等比数列,其公比为2,首项为,所以1因an0,由1式解出an2(2)由1式有SnTn为使SnTn为整数,当且仅当为整数.当n1,2时,显然SnTn不为整数,当n3时, 只需为整数,因为3n1与3互质,所以为9的整数倍.当n9时,13为整数,故n的最小值为9.39(辽宁卷)已知函数f(x)=,其中a,b,c是以d为公差的等差数列,且a0,d0.设1-上,在,将点A,B,C(I)求(II)若ABC有一边平行于x轴,且面积为,求a,d的值【解析】(I)解:令,得 当时,; 当时,所以f(x)在x=-1处取得最小值即(II)的图像的开口向上,对称轴方程为 由知在上的最大值为 即 又由当时,取得最小值为 由三角形ABC有一条边平行于x轴知AC平行于x轴,所以又由三角形ABC的面积为得 利用b=a+d,c=a+2d,得 联立(1)(2)可得.解法2: 又c0知在上的最大值为 即:又由 当时,取得最小值为 由三角形ABC有一条边平行于x轴知AC平行于x轴,所以又由三角形ABC的面积为得利用b=a+d,c=a+2d,得联立(1)(2)可得45(山东卷)已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中=1,2,3,(1) 证明数列lg(1+an)是等比数列;(2) 设Tn=(1+a1) (1+a2) (1+an),求Tn及数列an的通项;(3) 记bn=,求bn数列的前项和Sn,并证明Sn+=1.解:()由已知,两边取对数得,即是公比为2的等比数列.()由()知(*)=由(*)式得() 又 又.48(上海卷)已知有穷数列共有2项(整数2),首项2设该数列的前项和为,且2(1,2,21),其中常数1(1)求证:数列是等比数列;(2)若2,数列满足(1,2,2),求数列的通项公式;(3)若(2)中的数列满足不等式|4,求的值(1) 证明 当n=1时,a2=2a,则=a; 2n2k1时, an+1=(a1) Sn+2, an=(a1) Sn1+2, an+1an=(a1) an, =a, 数列an是等比数列. (2) 解:由(1) 得an=2a, a1a2an=2a=2a=2, bn=(n=1,2,2k).(3)设bn,解得nk+,又n是正整数,于是当nk时, bn. 原式=(b1)+(b2)+(bk)+(bk+1)+(b2k)=(bk+1+b2k)(b1+bk) =.当4,得k28k+40, 42k4+2,又k2, 当k=2,3,4,5,6,7时,原不等式成立.52(天津卷)已知数列满足,并且(为非零参数,)(1)若成等比数列,求参数的值;(2)当时,证明;当时,证明.(I)解:由已知,且若、成等比数列,则,即。 而, 解得。(II)证明:由已知及,可得由不等式的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 隧道工程旋挖钻灌注桩施工风险防治措施
- 自动化软件测试框架创新创业项目商业计划书
- 水产产业链协同创新创业项目商业计划书
- 公卫考试题及答案
- 小学五年级道德与法治课题研究计划
- 小学二年级数学实践活动计划
- 汽车配件企业客户管理流程
- 新能源发电工期保证措施
- 2025版事业单位人力资源岗位聘用合同样板
- 2025版物流运输企业聘用员工合同样本
- 2025全国交管12123驾驶证学法减分考试题库与答案
- 《免除烦恼》课件
- 《非权力影响力》课件
- 2025年江西南昌市西湖城市建设投资发展集团有限公司招聘笔试参考题库附带答案详解
- 职业教育产教融合型数字化教材开发研究
- 文学传播学概论课件
- 第3单元主题活动三《创意玩具DIY》(课件)三年级上册综合实践活动
- 商务英语词汇大全
- 麻醉质量控制专家共识
- 反走私课件完整版本
- 2024-2025学年小学劳动一年级上册人教版《劳动教育》教学设计合集
评论
0/150
提交评论