



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
听 课 记 录 年 月 日 授 课教 师喻兰学 科数学学 校班 级大路中学高一(6)课题方程的根和函数的零点课型新课问题1 求下列方程的根(1);(2);(3)问题2 观察下表(一),求出表中一元二次方程的实数根,画出相应的二次函数图象的简图,并写出函数图象与x轴交点的坐标方 程函 数函 数图 象(简图)方程的实数根函数的图象与轴的交点提出疑问:方程的根与函数图象与x轴交点的横坐标之间有什么关系?结论:方程的根就是函数图象与X轴交点的横坐标。问题3 若将上面特殊的一元二次方程推广到一般的一元二次方程及相应的二次函数的图象与x轴交点的关系,上述结论是否仍然成立?方 程 的 根函数的图象(简图)图象与x轴的交点(二)总结归纳,形成概念1、函数的零点:对于函数y=f(x)我们把使方程f(x)=0的实数x叫做函数y=f(x)的零点。问:零点是一个点吗?求下列函数的零点。(1)(2)小结:求函数零点的步骤:2、你能说说方程的根、函数图象与x轴的交点、函数的零点三者之间的关系吗?等价关系:方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点(四)分组讨论,探究结论(零点存在性)问题4:1 求函数f(x)=lnx+2x-6的零点。2 判断函数f(x)=lnx+2x-6有没有零点?【设计意图:由学生思考,产生认知冲突,从而激发学生的求知欲。】思考: 函数yf(x)在某个区间上是否一定有零点?【铺设台阶,引出本节课的主要问题.】怎样的条件下,函数yf(x)一定有零点?问题5:(1)观察二次函数的图象:1 在区间上有零点_;_,_,_0(或)2 在区间上有零点_;_0(或)3 若把区间改为2,4,-2,2,0,5,4,5,-2,4结果如何?思考:根据以上探索,你能得出什么结论?结论:函数在区间端点处函数值乘积小于0,函数在该区间上有零点.这个结论推广到一般情况下还成立吗?(2)观察下面函数的图象1在区间上_(有/无)零点;_0(或)2在区间上_(有/无)零点;_0(或)3在区间上_(有/无)零点;_0(或)(3)观察屏幕上的函数图象:若函数在某区间内存在零点,则函数在该区间上的图象是(间断连续);含零点的某一较小区间中以零点左右两边的实数为自变量,它们各自所对应的函数值的符号是(相同互异)零点存在定理:如果函数y=f(x)在区间a,b上的图象是连续不断的一条曲线,并且有f(a).f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c(a,b),使得f(c)=0.这个c也就是方程f(x)=0的根。讨论:零点个数一定是一个吗? 逆定理成立吗?试结合图形来分析.五)观察感知,例题学习例2(教材第96页)求函数f(x)=x + 2x 6 的零点个数(1)你可以想到什么方法来判断函数零点个数?(2)判断函数的单调性,由单调性你能得该函数的单调性具有什么特性?解:用计算机或计算器作出x、 f(x)对应值表x1234f(x)-4-1.3061.09863.3863画出函数的图象,从列表和图象可看出,f(2)0,即f(2)f(3)0,所以函数在(2,3)内有零点。又由于函数在整个定义域内是增函数,故只有一个思考:你能给出这个函数是增函数的证明吗?不用计算机或计算器,你能估算出f(2)0吗?*作出函数y=lnx与y=6-2x的图象,观察两函数图象交点的横坐标与方程lnx+2x-6=0的根的关系.练习:1利用函数图象判断下列方程有没有根,有几个根:(1)-x2+3x+5=0;(2)2x(x-2)=-3;(3)x2=4x-4; (4)5x2+2x=3x2+52利用函数的图象,指出下列函数零点所在的大致区间:(1)f(x)= -x3-3x+5;(2)f(x)= 2xln(x-2)-3;(3)f(x)= ex-1+4x-4;(4)f(x)=3(x+2)(x-3)(x+4)+x小结:函数零点的求法. 代数法:求方程的实数根; 几何法:对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点(六)反思小结,提升能力1函数零点的定义2等价关系 函数Y=f(x)的零点 函数Y=f(x)的图象与X轴交点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新质生产力加速度
- 2025年流行病学研究专业综合评估答案及解析
- 2025年肿瘤学细胞遗传学知识考核试卷答案及解析
- 2025年中医学中医经典名方辨析试卷答案及解析
- 2025年外科手术创伤处理技术实操评估答案及解析
- 2025年妇产科常见疾病诊断鉴别考试答案及解析
- 医护关系舞台剧本
- 发展能源新质生产力翻译
- 2025年心理咨询心理评估技术应用模拟考试卷答案及解析
- 2025年风湿科免疫治疗药物剂量计算试卷答案及解析
- 常见肿瘤AJCC分期手册第八版(中文版)
- 绿色施工专项方案(技术方案)
- 挂篮检查验收记录表
- 专业技术职务资格申报材料真实性承诺书
- 脓毒症指南课件
- 生产副总经理岗位职责标准版本(五篇)
- 对颈椎概念和命名的再认识
- 华为信息安全宣传
- 物业管理供方管理程序
- GB/T 3730.2-1996道路车辆质量词汇和代码
- GB 25585-2010食品安全国家标准食品添加剂氯化钾
评论
0/150
提交评论