




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
翻译AnalysisofsupportbyhydraulicpropsinalongwallworkingC.Gonzlez-Niciezaa,A.Menndez-Dazb,A.E.lvarez-Vigilc,M.I.lvarez-FernndezaaDepartmentofMiningEngineering,MiningEngineeringSchool,UniversityofOviedo,Independencia13,33004,Asturias,SpainbDepartmentofConstructionEngineeringandManufacturing,MiningEngineeringSchool,UniversityofOviedo,Independencia13,33004,Asturias,SpaincDepartmentofMathematics,MiningEngineeringSchool,UniversityofOviedo,Independencia13,33004,Asturias,SpainReceived24May2007;receivedinrevisedform27September2007;accepted4October2007Availableonline4November2007AbstractThispaperpresentsastudyofthesupportsysteminananthraciteworkingsituatedinFeixolin(NorthernSpain).Theworkingisminedbythelongwallmethod,cavingbeingcontrolledbymeansofhydraulicpropsandwoodencribs.Asthecoalseamhasanaveragethicknessof3.5mand30slope,theworkingsdonotmeetSpanishregulationsfortheminingoflongwallcoalseams.Thismeansthatthesupportsystemmustbestudiedandtestedbeforeitisdefinitivelyimplementedinthemine.Adetailedstudyofthematerialsthatmakeupthecoalseamandthesurroundingrockmasswascarriedout,determiningthegeomechanicalpropertiesofthesebymeansofbothlaboratoryandinsitutests.Tothisend,afullscaleexperimentalworkingwasconditionedtocarryoutthetests,withspecialemphasisontheloadplatetestsandpenetrationloadtestscarriedoutwiththeactualhydraulicsupportpropsoftheworking.Withthedatathusobtained,thebehaviouroftheworkingwasmodelledusingFLACinordertodeterminethemaximumpressurethatthecoalhangingwallandfootwalliscapableofsupporting,aswellasthedensityofthepropsandtheconditionsofthesupportstheyrestonsothatpenetrationofthepropsisnotproduced.Theoverallaimwastovalidatetheintendedsupportsystemfortheundergroundmine.2007ElsevierB.V.Allrightsreserved.Keywords:Longwallcoalfaces;Supportsystem;Hydraulicsupport;Fullscalelongwall;Hydraulicprops;Sleepers1.IntroductionandbackgroundIncoalmining,theimprovementofthemechaniza-tionofundergroundmines(workings),aswellasthepreparationwork(maincrosscuts,veindrifts,pits,etc.)hastraditionallybeenprecededbyaccumulatedknowledgeofsmall-scaleminingcarriedoutovermanyyears.However,whencoalseamsofmajorthicknessandslopeappear,itisnecessarytocarryoutamorethoroughstudyofthesupportsysteminthemine.Inthesecases,thegoalofanysupportsystemistoachieveequilibriumoftherockmass.Thesupportneededtoaccomplishthisobjectivedependsonthegroundreactioncurve.Theconceptofagroundreactioncurvewasoriginallydevelopedfortheciviltunnelingindustrywherethetimingandmethodofgroundsupportisdeterminedbymonitoringthesupportpressureandexcavationconvergenceduringconstruction(Brownetal.,1983;EsterhuizenandBarczak,2006).Thegroundresponseapproachhasfoundapplicationinbothhardrockandcoalminingasamethodtobetterunderstandtheinteractionbetweentherockmassandthesupportsystem(Bigby,1987;Vervoort,1988;BarczakandGearhart,1998;SinghandSingh,1999).Theadvancesmadeinnumericalmodeling(Coulthard,1999)providenewopportunitiestodevelopgroundreactioninformation.FinitedifferencesoftwaresuchasFLAC(FastLagrangianAnalysisofContinua)(Itasca,1996)canbeusedtodevelopmeaningfulgroundres-ponsecurves.Thesoftwareisabletorealisticallymodelrockbehaviourfromtheinitialelasticresponsetothelargedisplacementsanddeformationsthatareassociatedwithrockfailure.Thesoftwarealsohasabuilt-inprogramminglanguagewhichallowstheusertocontrolloadsanddisplacementsinthemodel.Byapplyinginternalpressuretotheentryexcavation,thegroundresponsecurvecanbedetermined.Oncethisisdone,moreappropriatedesigncriteriaforsupportcanbedeveloped(Badretal.,2002;MedhurstandReed,2005).Numericalmodellingthusconstitutesabasictoolfordesigningthesupportsysteminaminewhensituationsarisethatsubstantiallyalteritsconfiguration,suchastheneedtomineseamsofmajorthicknessandslope.ThisiswhatoccurredintheworkingsofSeamC-24attheFeixolinmineownedbyMSP(MineroSiderrgicadePonferrada).Thisseamhadpreviouslybeenminedasanopen-castmine.Environmental,socialandeconomicmotivesjustifiedtheneedtominethisseamasanundergroundmine.ThefirmMSPdecidedtodosobymeansofalongwallmeasuring180minlength,usinghydraulicpropsandwoodencribstocontrolthecavingoftheworkings.SeamC-24correspondstoagoodqualityanthracite,withanaveragethicknessof3.3mandaslopeof30situatedatadepthof300mbelowground.Duetoitsdimensionsandslope,thisseamdoesnotcorrespondtothedirectivesestablishedinSpanishregulationsforthesupportofcoalseams(ITCMIE,1996).ThismeansthataresearchprojectmustbedevelopedthatvalidatesthetechnicalfeasibilityoftheSupportSystemSchemeinthemine.Thispaperpresentsthemethodologyfollowedinthedevelopmentofthisresearchproject.ThelongwallcurrentlyundertestintheFeixolinminewasusedasanexperimentalworkingforinsitutestswiththeaimofdeterminingthegeotechnicalcharacteristicsofthehangingwall,footwallandsurroundingrockmassoftheseam,aswellasthoseofthehydraulicpropsandwoodencribs.ThisallowedustoobtainthenecessarydatatocarryoutnumericalmodellingofdifferentsupportsystemalternativesusingFLAC.WeshallfirstdescribetheareasoftheFeixolinminethatwerestudied(Section2)tothenproceedinSection3withadescriptionoftheexperimentallongwallthatwasdevelopedtocarryoutthisresearchstudy.Subsequently,weshallpresentadetaileddescriptionofthematerialsthatmakeupthecoalseamandthesurroundingrockmass(Section4).Section5describesthelaboratory(Section5.1)andinsitutests(Section5.2)conductedtodeterminethegeomechanicalpropertiesofeachmaterial.Specialreferenceismadetotheloadplateandpenetrationtestsoftheprops,sincetheweaknessofthefootwallindicatesthatthisisakeyissueinthedesignofthesupportsystem.InSection5.3,theelastoplasticconstantsaredeterminedforeachmaterialonthebasisofthetestscarriedout.InSection6,weanalyzetheresultsofthenumericalmodellingperformedusingFLACtodeterminethemaximumpressurethatthecoalhangingwallandfootwalliscapableofsupporting.Furthermore,thedensityofpropsiscalculated,aswellasthesupportconditionssothatpenetrationofthepropsisnotproduced.Finally,themostimportantaspectstobetakenintoaccountinthedesignofthesupportsystemfortheworkingsarepresentedintheconclusionssection.2.AreasstudiedintheFeixolinmineForthesakeofthestudy,theFeixolinminewasdividedintofourareas.Areas1,2and3areopen-cast,whiletheInteriorArea,locatedintheundergroundmine,correspondstotheexperimentalworkingusedtocarryouttheinsitutestsofthesupportsystem.Fig.1showsthegroundplanpositionofeachoftheareasunderstudy.Fig.2isaschematicABcross-sectionshowingthepositionofSeamC-24andthelocationoftheexperimentalworkingsintheInteriorAreaoftheundergroundmine.TheInteriorAreaconsistsofaworkingandtworockdriftstoSeamC-24fromthemaincrosscutsofLevel4(1300mabovesealevel)andofLevel6(1400mabovesealevel).Atthelowerend,theseamisaccessedfromthesurroundingrockatthebaselevel;whileattheupperend,arockdriftgivesaccesstotheseam(seeFig.4).Subsequentlyacrosscutwillbemadeintheseam,eliminatingthepreviousrockdriftstotheworking.Asthiscoaldriftadvances,itwillbeabandonedbehindthefaceandwillbereachedbycrosscutstothebulkdrift(Fig.3).Weshallnextdescribethefundamentalcharacter-isticsoftheexperimentallongwallworkinginwhichtheteststovalidatetheSupportSystemSchemeintheminewillbeconducted.Pig.1locationoftheareaunderstudyinthefeixolinminePig.2schematiccross-setionABoftheareaunderstudyinthefeixolinmine3.ExperimentallongwallworkingandproblemsinthesupportsystemTheworkinginwhichSeamC-24isminedisalongwallcoalfacewithanaverageslopeof30andanaveragethicknessof3.3m.Theinitiallengthoftheworkingwas180m,althoughadrivewasadvancedintheseamonthe6thLevelwhichhasenabledthetotallengthtobereducedtoaround150m.Materialisintroducedintotheworkingviathisnewdrift,abandoningthechutethatwasusedinitially.Thethicknessoftheseamvariesalongtheworking,beingaround3matthetopandmorethan5matthebottom.Greaterthicknessesofupto7mhavebeenobservedintheareaofthechute.Thethicknessdecreasesasthedistancefromthecoalfacetothefaultincreases,untilthicknessesoflessthan3m.Coalwinningiscarriedoutbymeansofpickhammersandthecoalistransportedintheworkingusingachainconveyorandtrays.AdvanceoftheworkingiscarriedoutbycontrolledcavingusingwoodencribsandhydraulicpropsmanufacturedbySalzgitter,typesEAM36andEA25,restingonwoodensleepersonthefootwallandwitharticulatedboltandwedgeframesets,type100,onthehangingwall.TheEAM36propshaveminimumandmaximumopeningsof2.5mand3.6m,respectively.TheEA25propshaveminimumandmaximumopeningsof1.485mand2.5m,respectively.Thesepropswereplacedformingameshwithaseparationof1.25m0.55mbetweenprops.Theformerdistancecorrespondstothedirectionofadvanceandthelattertotheparalleldirectiontothecoalface.Fig.4showstwosupportlanesintheworkingwiththreerowsofprops.Fig.5representsthedistributionofthepropsinthetwoareasoftheworking,oneclosetoLevel6inwhichthedistributionofwoodencribsandthelocationofthedifferentrowsofpropscanbeappreciated,andanotherareaclosetoLevel4inthetailgate.Onlytworowsofpropsappearinthelatterareaintheworking.Weshallnowbrieflydescribetheobservationsmadeintheexperimentalworkingwheninstallingthehydraulicpropsupportsystem.Thepressuremeasuredinthepropswhentheywereinstalledwas11MPa.Thereadingscarriedoutonedaylaterindicatedthatseveralpropshadlostbetween4and6MPa.Thislossinpressureisduetothepoorcompetenceofthefootwall,leadingtothesleeperssinkingintoitandtheconsequentlossinloadbearingcapacityoftheprops.Moreover,itisnotpossibletotightenthepropsagainsttheroof,whichmeansthattheynolongerworkactively.Thehangingwallbeginstosufferalterationsandtofracture,resultinginrockfallsontothepropsanddisplacementofthesupportinthedirectionofmaximumslopeandtowardsthegoaf.Afterthreedays,muchlowerworkingpressuresthantheinitialloadvalueof11MPawereappreciatedintheworking.63%ofthemeasuredpropsdidnotreachapressureof6MPaand29%wereevenbelow5MPa.Only27%ofthepropshadapressureofbetween6and11MPa,while10%hadahigherpressurethantheinitialloadvalue,11MPa.Ontheotherhand,someofthepropswereunder-minedduetothepresenceofwateratsomepointsonthelongwall.Thiswatereasilydegradesthecoalmudsituatedonthecoalfacefootwall,makingthiscoalmudflowplastically.Thishasmeantthatithasbeennecessarytoincreasethesupportsurfacefortheprops,protectingthefootwallwithwoodensleepersplacedonboards.Furthermore,theroofhasbeenlaggedwithwoodbetweentheframesetssoastopreventsmallblocksfromfalling.Theinitialideawastoplacewoodencribsevery20minthedirectionofadvance,althoughthesearecurrentlyonlyusedasprotectionintheaccessareastotheworking.ThecribsinthepartoftheworkingclosetothechutecanbeseeninFig.6-a,alongwiththetimberinginthisarea.Fromtheobservationscarriedoutduringtheremovalofthelastrowofprops,itwasfoundthattheroofgenerallycavesinwell,registeringgoafblockswithamaximumsizeofaround122m3.Thetailgateissupportedwithtrapezoidal290N/mdoublemetallicframesets(seeFig.6-b)withtheclampsandribs,alllaggedbehindwithtimber.Someframesetswarpedslightly,whileintheareaclosetothechutethepushisgreater,bendingsomeprofiles,underminingthemloseatthebottomandbreakingsomeoftheclamps.Topreventthesefailuresinthesupportsystem,itisnecessarytostudythestressstateoftheworkinganddeterminethemaximumpressurethatthecoalseamhangingwallandfootwallarecapableofsupporting.Todoso,itisessentialtogaindetailedknowledgeofthematerialsthatmakeuptherockmassofthemine,aswellasofthematerialsthatareemployedinthesupportsystem,suchasprops,woodencribsandsleepers.Weshallnowseehowtheseaspectswerestudied.4.GeologicalcharacterizationofthemineItwasinitiallynecessarytoconductadetailedanalysisofthelithologiesthatconstitutethehangingwallandfootwallofSeamC-24.Thisanalysis,whichtookplacebothinsidethemineandinAreas1,2and3oftheopen-castmine,consistedof:Astudyofthegeneralgeologyofthemine,aswellasofitshydrogeology.Visualinspectionofthematerialsinthehangingwallandfootwalloftheseam.GeotechnicalanalysisofthethreeareasidentifiedasAreas1,2and3,aswellasinthecrosscutofLevel4andinthegoafoftheworking.Measurementofthejointsanddiscontinuitiessoastocarryoutadetailedmappingofthese.Theaveragesizeoftheblockswasalsodetermined.Thedrillingofseveralboreholesof76mmindiameterinthetailgateoftheworking,withtheextractionofthecoreforgeotechnicalanalysisinthelaboratory.Weshallfirstdescribetheaspectsrelatedtothegeneralgeologyofthearea,tothengoontostudythelithologiesofthehangingwallandfootwallofSeamC-24inmoredetail.4.1.GeneralgeologyoftheareaTheanthracitecoalseamC-24oftheFeixolingroupbelongstothecoalbasinofVillablino,thegeologicalenvironmentofwhichisfundamentallymadeupofpreCambrianandPalaeolithicmaterials.ThediscordantStephanianconstitutestheVillablinocoalbasin,andismadeupofadetriticseriesthatispost-tectonicincharacter.Theconglomeratesarecomposedofwell-rounded,centimetricbouldersofquartz,sandstonesandslatesinasiliceousmatrix.Thesandstonesarelitharenites,sub-litharenites,sub-arkosesandquartzsandstonescementedbyironoxidesandchlorites.Theypossesserosivesedimentarystructures.Thecoalseamsarevariableinthickness,rangingfrom0.40to2m,reachingupto5minsomeexceptionalcases.Thetotalthicknessoftheseries,thoughvariable,rangesbetween2500and3000m.Porphyriesofupto30minthicknessappearatthebaseoftheseries,concordantwiththeseries.Theseproducedthermalmetamorphismonthesurroundinglevels,transformingthecoalintoanthracite.Fig.7showsthedistributionoflithologiesinthesurroundingsoftheFeixolinmine.Asregardsthehydrogeologyofthearea,twoverydistinctareasmaybeconsidered.Thepre-CambrianFig.7.GeologicalformationsinthesurroundingsoftheFeixolinarea.Fig.6.a)Thewoodcribsofthechuteandb)thedoublemetalframesetsofLevel4.72C.Gonzlez-Niciezaetal./InternationalJournalofCoalGeology74(2008)6792materialsaremainlymadeupofslateswithalmostnullpermeability,whichtranslatesasscantaccumulationandcirculationofundergroundwater.Thenorth-easternzoneisformedbyDevonianandCarboniferousground,presentingmajorinterestfortheformationofaquifers.Thelithologicaldifferencesbetweenformations,aswellasthetectonicswhichhasgivenrisetolargestructureswithhundredsofmetresoflimestones,aresealedbyimpermeableclayey-slateformations.Numerousspringsexistinthiszone.TheStephaniansystemalsopossessescharacteristicsthatallowwatertoaccumulate,aboveallthecoarserdetriticlevels.Althoughtheselevelsaredisconnectedfromoneanotherbynumerouslayersofimpermeableslates,theymaycommunicateasaresultofthepresenceoffaults.4.2.StratigraphyoftheareaclosetotheseamThelithologiesoftheareaclosetothecoalseamwerefirstobtainedfromthemaincrosscutsonLevels4and6,whichalloweddirectinspectionofthehangingwallandfootwallofthecoalseam.Several76mmdiameterboreholeswerealsodrilled,extractingthecoretocarryoutlaboratorytests.TheseamwascharacterizedindetailintheveindriftonLevel6atthemomentinwhichthecoalfacewasfirstcutonopeningupthechuteoftheworking.Fig.8showsthelithographiccross-sectionofthisface,inwhichdifferentlithologicalsectionscanbeappreciated.Inspectionworkwasmademoredifficultonthecrosscutsbythetimberlaggingbetweentheframesets,themetallicgrillesandthemetallicframesetsthemselves,which,apartfromhinderingvisualobservation,affectcompassmeasurements.Duetothesedifficultiesintakingmeasurementsinsidethemine,thestudywasextendedtotheopen-castoutcroppingofSeam24,inAreas1,2and3.Fig.9showsthedistributionofmaterialsinArea2.Thefollowingmaterialswerefoundinthehangingwalloftheseam:Siltstone:Thehangingwalladjoiningtheseamismadeupofsome23moffracturedlighttodarkgreyfine-grainedsiltstone,withanetworkofjointswithspacingsvaryingbetween15cmand1m.Atthesametime,themajorpresenceofcm-sizeplantfossilremains(leaves,trunks,etc.)isworthnoting,aswellascoaldeposits,moreabundantinpositionsclosertothecoalseam.Mudstone:Thesiltstoneisfollowedbya5-m-thicklayerofahighlyfracturedmaterial,whichwasdenominatedmudstone.Thisisamaterialwithatransitioncompositionbetweenmudandveryfinegrainsandstone.Themostimportantfamiliesofjointshavespacingsthatvarybetween0.4mand1m,thepossibleformationofblocksofupto1m1mbeingobserved.Greywackes:ThehangingwallofSeamC-24ismadeupofamediumgraingreywackewithanodularor“onion-like”appearance.This“onion-like”appearanceobeysthesingulardispositionoflayersthatarecentimetricalinthicknessesandofscantcompactionaroundasmall-sizedcentralnodule.Thisnodularconfigurationofthegreywackewouldfavourthecavingoftheworkingasthehydraulicpropsareremoved.Thefollowingmaterialswerefoundinthefootwalloftheseam:Shale:Thematerialsituatedimmediatelybelowthecoalseamismadeupof3090cmofgreyshale,withabundantplantremainsand,onoccasions,tracesofclay.Siltstone:Belowtheshaleisfounda50-cmthicklayerofsiltstone,whichisdarkgreyincolour,withlargeoxidationstainsandsimilarcharacteristicstothehangingwallsiltstone.Coal:Belowthesiltstone,thereisacoallayerofbetween30and50cminthickness,whosefootwallslidesrelativelyeasily,aswasobservedondifferentvisitstotheopen-castmine.Mudstone:Belowthecoallayeraretobefoundsome78mofmudstone,characterisedbypresentingoxidationstainsandmm-sizelensesofcoal.Onceagain,thisisatransitionmaterialbetweensiltstoneandsandstone.Onthebasisoftheselithologies,“coalmuds”measuringafewcentimetresinthicknessandcomposedofamixtureofcoal,clay,andshalewereidentifiedinthefootwall.Thesecoalmudsbehavelikeahighlyplasticmaterialandmightcauseproblemsofslidingintheworking,especiallyinthoseareaswithpoordrainage.Asregardsthecoal,thisismadeupofgoodqualityanthracitethatconstitutesthehangingwallveinandwhichdecreasesinqualityaswellasalternatingwithotherintermediateseamsofcoalmudandearthasitapproachesthefootwall.Thehangingwallveinis1-mthickandisfollowedbybetween70cmand1.2mofalternatingcoalmudandearth,withamixtureofbothcoalandcoalmudappearing.Thefootwallveincanbeidentifiednext,withathicknessofbetween0.5and1.3m.Beforereachingafirmfootwall,afinelayerofclaycoalmudisencountered,ofaround15cm.4.3.StudyofthejointsandsizeoftheblocksInordertocarryoutaninitialestimationofthestrengthcharacteristicsofthematerials(seeSection5.3)itisnecessarytoknowthedistributionofjointsintherockmass.Todoso,thejointspresentinthehangingwallandfootwalloftheseamwereidentifiedinthemaincrosscutsonLevels4and6aswellasintheopen-castmine.Thedirectionanddipofthesejointswasmeasured,aswellastheirspacing,persistence,opening,roughness,fillinganddegreeofmeteorization.AllthemeasurementswereinputtedintotheDIPSsoftwarepackage,withtheaimofidentifyingthemainfamiliesofjointsandgraphicallyrepresentingtheirmainplanes.Table1showsthemeanvaluesoforientationanddipofthefamiliesofdiscontinuitiesencounte
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 远程工作技能需求-洞察与解读
- 2025第二季度福建中共福州市马尾区委员会办公室招聘编外人员1人模拟试卷及答案详解(易错题)
- 2025广西崇左市人民检察院公开招聘机关文员4人考前自测高频考点模拟试题及答案详解(有一套)
- 2025辽宁鞍山市立山区教育局面向应届毕业生校园招聘2人模拟试卷及参考答案详解1套
- 2025贵州铜仁职业技术学院引进博士研究生15人模拟试卷及完整答案详解1套
- 2025年河北邯郸丛台区公开选聘农村党务(村务)工作者42名模拟试卷带答案详解
- 2025昆明市禄劝县人民法院司法协警招录(2人)考前自测高频考点模拟试题含答案详解
- 供应链透明度提升策略-第23篇-洞察与解读
- 2025广西平果市新安镇人民政府城镇公益性岗位人员招聘2人模拟试卷及答案详解(网校专用)
- 2025广东东莞市水务局招聘聘用人员2人考前自测高频考点模拟试题附答案详解(典型题)
- 过氧化氢异丙苯安全技术说明书MSDS
- GB/T 35112-2017农业用腐殖酸和黄腐酸原料制品分类
- GB/T 3098.4-2000紧固件机械性能螺母细牙螺纹
- 【演练方案】特种设备事故(压力容器)应急预案
- 全新档案法专题学习讲座课件
- 乙酸酐(醋酸酐)的理化性质及危险特性表
- 六年级上册道德与法治课件第四单元第8课
- 量具使用知识培训课件
- 感动中国人物-于敏
- Q-RJ 557-2017 航天型号产品禁(限)用工艺目录(公开)
- JIS C62133-2-2020 便携式密封二次电池及其电池的安全要求 第2部分:锂系统
评论
0/150
提交评论