已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
翻译AnalysisofsupportbyhydraulicpropsinalongwallworkingC.Gonzlez-Niciezaa,A.Menndez-Dazb,A.E.lvarez-Vigilc,M.I.lvarez-FernndezaaDepartmentofMiningEngineering,MiningEngineeringSchool,UniversityofOviedo,Independencia13,33004,Asturias,SpainbDepartmentofConstructionEngineeringandManufacturing,MiningEngineeringSchool,UniversityofOviedo,Independencia13,33004,Asturias,SpaincDepartmentofMathematics,MiningEngineeringSchool,UniversityofOviedo,Independencia13,33004,Asturias,SpainReceived24May2007;receivedinrevisedform27September2007;accepted4October2007Availableonline4November2007AbstractThispaperpresentsastudyofthesupportsysteminananthraciteworkingsituatedinFeixolin(NorthernSpain).Theworkingisminedbythelongwallmethod,cavingbeingcontrolledbymeansofhydraulicpropsandwoodencribs.Asthecoalseamhasanaveragethicknessof3.5mand30slope,theworkingsdonotmeetSpanishregulationsfortheminingoflongwallcoalseams.Thismeansthatthesupportsystemmustbestudiedandtestedbeforeitisdefinitivelyimplementedinthemine.Adetailedstudyofthematerialsthatmakeupthecoalseamandthesurroundingrockmasswascarriedout,determiningthegeomechanicalpropertiesofthesebymeansofbothlaboratoryandinsitutests.Tothisend,afullscaleexperimentalworkingwasconditionedtocarryoutthetests,withspecialemphasisontheloadplatetestsandpenetrationloadtestscarriedoutwiththeactualhydraulicsupportpropsoftheworking.Withthedatathusobtained,thebehaviouroftheworkingwasmodelledusingFLACinordertodeterminethemaximumpressurethatthecoalhangingwallandfootwalliscapableofsupporting,aswellasthedensityofthepropsandtheconditionsofthesupportstheyrestonsothatpenetrationofthepropsisnotproduced.Theoverallaimwastovalidatetheintendedsupportsystemfortheundergroundmine.2007ElsevierB.V.Allrightsreserved.Keywords:Longwallcoalfaces;Supportsystem;Hydraulicsupport;Fullscalelongwall;Hydraulicprops;Sleepers1.IntroductionandbackgroundIncoalmining,theimprovementofthemechaniza-tionofundergroundmines(workings),aswellasthepreparationwork(maincrosscuts,veindrifts,pits,etc.)hastraditionallybeenprecededbyaccumulatedknowledgeofsmall-scaleminingcarriedoutovermanyyears.However,whencoalseamsofmajorthicknessandslopeappear,itisnecessarytocarryoutamorethoroughstudyofthesupportsysteminthemine.Inthesecases,thegoalofanysupportsystemistoachieveequilibriumoftherockmass.Thesupportneededtoaccomplishthisobjectivedependsonthegroundreactioncurve.Theconceptofagroundreactioncurvewasoriginallydevelopedfortheciviltunnelingindustrywherethetimingandmethodofgroundsupportisdeterminedbymonitoringthesupportpressureandexcavationconvergenceduringconstruction(Brownetal.,1983;EsterhuizenandBarczak,2006).Thegroundresponseapproachhasfoundapplicationinbothhardrockandcoalminingasamethodtobetterunderstandtheinteractionbetweentherockmassandthesupportsystem(Bigby,1987;Vervoort,1988;BarczakandGearhart,1998;SinghandSingh,1999).Theadvancesmadeinnumericalmodeling(Coulthard,1999)providenewopportunitiestodevelopgroundreactioninformation.FinitedifferencesoftwaresuchasFLAC(FastLagrangianAnalysisofContinua)(Itasca,1996)canbeusedtodevelopmeaningfulgroundres-ponsecurves.Thesoftwareisabletorealisticallymodelrockbehaviourfromtheinitialelasticresponsetothelargedisplacementsanddeformationsthatareassociatedwithrockfailure.Thesoftwarealsohasabuilt-inprogramminglanguagewhichallowstheusertocontrolloadsanddisplacementsinthemodel.Byapplyinginternalpressuretotheentryexcavation,thegroundresponsecurvecanbedetermined.Oncethisisdone,moreappropriatedesigncriteriaforsupportcanbedeveloped(Badretal.,2002;MedhurstandReed,2005).Numericalmodellingthusconstitutesabasictoolfordesigningthesupportsysteminaminewhensituationsarisethatsubstantiallyalteritsconfiguration,suchastheneedtomineseamsofmajorthicknessandslope.ThisiswhatoccurredintheworkingsofSeamC-24attheFeixolinmineownedbyMSP(MineroSiderrgicadePonferrada).Thisseamhadpreviouslybeenminedasanopen-castmine.Environmental,socialandeconomicmotivesjustifiedtheneedtominethisseamasanundergroundmine.ThefirmMSPdecidedtodosobymeansofalongwallmeasuring180minlength,usinghydraulicpropsandwoodencribstocontrolthecavingoftheworkings.SeamC-24correspondstoagoodqualityanthracite,withanaveragethicknessof3.3mandaslopeof30situatedatadepthof300mbelowground.Duetoitsdimensionsandslope,thisseamdoesnotcorrespondtothedirectivesestablishedinSpanishregulationsforthesupportofcoalseams(ITCMIE,1996).ThismeansthataresearchprojectmustbedevelopedthatvalidatesthetechnicalfeasibilityoftheSupportSystemSchemeinthemine.Thispaperpresentsthemethodologyfollowedinthedevelopmentofthisresearchproject.ThelongwallcurrentlyundertestintheFeixolinminewasusedasanexperimentalworkingforinsitutestswiththeaimofdeterminingthegeotechnicalcharacteristicsofthehangingwall,footwallandsurroundingrockmassoftheseam,aswellasthoseofthehydraulicpropsandwoodencribs.ThisallowedustoobtainthenecessarydatatocarryoutnumericalmodellingofdifferentsupportsystemalternativesusingFLAC.WeshallfirstdescribetheareasoftheFeixolinminethatwerestudied(Section2)tothenproceedinSection3withadescriptionoftheexperimentallongwallthatwasdevelopedtocarryoutthisresearchstudy.Subsequently,weshallpresentadetaileddescriptionofthematerialsthatmakeupthecoalseamandthesurroundingrockmass(Section4).Section5describesthelaboratory(Section5.1)andinsitutests(Section5.2)conductedtodeterminethegeomechanicalpropertiesofeachmaterial.Specialreferenceismadetotheloadplateandpenetrationtestsoftheprops,sincetheweaknessofthefootwallindicatesthatthisisakeyissueinthedesignofthesupportsystem.InSection5.3,theelastoplasticconstantsaredeterminedforeachmaterialonthebasisofthetestscarriedout.InSection6,weanalyzetheresultsofthenumericalmodellingperformedusingFLACtodeterminethemaximumpressurethatthecoalhangingwallandfootwalliscapableofsupporting.Furthermore,thedensityofpropsiscalculated,aswellasthesupportconditionssothatpenetrationofthepropsisnotproduced.Finally,themostimportantaspectstobetakenintoaccountinthedesignofthesupportsystemfortheworkingsarepresentedintheconclusionssection.2.AreasstudiedintheFeixolinmineForthesakeofthestudy,theFeixolinminewasdividedintofourareas.Areas1,2and3areopen-cast,whiletheInteriorArea,locatedintheundergroundmine,correspondstotheexperimentalworkingusedtocarryouttheinsitutestsofthesupportsystem.Fig.1showsthegroundplanpositionofeachoftheareasunderstudy.Fig.2isaschematicABcross-sectionshowingthepositionofSeamC-24andthelocationoftheexperimentalworkingsintheInteriorAreaoftheundergroundmine.TheInteriorAreaconsistsofaworkingandtworockdriftstoSeamC-24fromthemaincrosscutsofLevel4(1300mabovesealevel)andofLevel6(1400mabovesealevel).Atthelowerend,theseamisaccessedfromthesurroundingrockatthebaselevel;whileattheupperend,arockdriftgivesaccesstotheseam(seeFig.4).Subsequentlyacrosscutwillbemadeintheseam,eliminatingthepreviousrockdriftstotheworking.Asthiscoaldriftadvances,itwillbeabandonedbehindthefaceandwillbereachedbycrosscutstothebulkdrift(Fig.3).Weshallnextdescribethefundamentalcharacter-isticsoftheexperimentallongwallworkinginwhichtheteststovalidatetheSupportSystemSchemeintheminewillbeconducted.Pig.1locationoftheareaunderstudyinthefeixolinminePig.2schematiccross-setionABoftheareaunderstudyinthefeixolinmine3.ExperimentallongwallworkingandproblemsinthesupportsystemTheworkinginwhichSeamC-24isminedisalongwallcoalfacewithanaverageslopeof30andanaveragethicknessof3.3m.Theinitiallengthoftheworkingwas180m,althoughadrivewasadvancedintheseamonthe6thLevelwhichhasenabledthetotallengthtobereducedtoaround150m.Materialisintroducedintotheworkingviathisnewdrift,abandoningthechutethatwasusedinitially.Thethicknessoftheseamvariesalongtheworking,beingaround3matthetopandmorethan5matthebottom.Greaterthicknessesofupto7mhavebeenobservedintheareaofthechute.Thethicknessdecreasesasthedistancefromthecoalfacetothefaultincreases,untilthicknessesoflessthan3m.Coalwinningiscarriedoutbymeansofpickhammersandthecoalistransportedintheworkingusingachainconveyorandtrays.AdvanceoftheworkingiscarriedoutbycontrolledcavingusingwoodencribsandhydraulicpropsmanufacturedbySalzgitter,typesEAM36andEA25,restingonwoodensleepersonthefootwallandwitharticulatedboltandwedgeframesets,type100,onthehangingwall.TheEAM36propshaveminimumandmaximumopeningsof2.5mand3.6m,respectively.TheEA25propshaveminimumandmaximumopeningsof1.485mand2.5m,respectively.Thesepropswereplacedformingameshwithaseparationof1.25m0.55mbetweenprops.Theformerdistancecorrespondstothedirectionofadvanceandthelattertotheparalleldirectiontothecoalface.Fig.4showstwosupportlanesintheworkingwiththreerowsofprops.Fig.5representsthedistributionofthepropsinthetwoareasoftheworking,oneclosetoLevel6inwhichthedistributionofwoodencribsandthelocationofthedifferentrowsofpropscanbeappreciated,andanotherareaclosetoLevel4inthetailgate.Onlytworowsofpropsappearinthelatterareaintheworking.Weshallnowbrieflydescribetheobservationsmadeintheexperimentalworkingwheninstallingthehydraulicpropsupportsystem.Thepressuremeasuredinthepropswhentheywereinstalledwas11MPa.Thereadingscarriedoutonedaylaterindicatedthatseveralpropshadlostbetween4and6MPa.Thislossinpressureisduetothepoorcompetenceofthefootwall,leadingtothesleeperssinkingintoitandtheconsequentlossinloadbearingcapacityoftheprops.Moreover,itisnotpossibletotightenthepropsagainsttheroof,whichmeansthattheynolongerworkactively.Thehangingwallbeginstosufferalterationsandtofracture,resultinginrockfallsontothepropsanddisplacementofthesupportinthedirectionofmaximumslopeandtowardsthegoaf.Afterthreedays,muchlowerworkingpressuresthantheinitialloadvalueof11MPawereappreciatedintheworking.63%ofthemeasuredpropsdidnotreachapressureof6MPaand29%wereevenbelow5MPa.Only27%ofthepropshadapressureofbetween6and11MPa,while10%hadahigherpressurethantheinitialloadvalue,11MPa.Ontheotherhand,someofthepropswereunder-minedduetothepresenceofwateratsomepointsonthelongwall.Thiswatereasilydegradesthecoalmudsituatedonthecoalfacefootwall,makingthiscoalmudflowplastically.Thishasmeantthatithasbeennecessarytoincreasethesupportsurfacefortheprops,protectingthefootwallwithwoodensleepersplacedonboards.Furthermore,theroofhasbeenlaggedwithwoodbetweentheframesetssoastopreventsmallblocksfromfalling.Theinitialideawastoplacewoodencribsevery20minthedirectionofadvance,althoughthesearecurrentlyonlyusedasprotectionintheaccessareastotheworking.ThecribsinthepartoftheworkingclosetothechutecanbeseeninFig.6-a,alongwiththetimberinginthisarea.Fromtheobservationscarriedoutduringtheremovalofthelastrowofprops,itwasfoundthattheroofgenerallycavesinwell,registeringgoafblockswithamaximumsizeofaround122m3.Thetailgateissupportedwithtrapezoidal290N/mdoublemetallicframesets(seeFig.6-b)withtheclampsandribs,alllaggedbehindwithtimber.Someframesetswarpedslightly,whileintheareaclosetothechutethepushisgreater,bendingsomeprofiles,underminingthemloseatthebottomandbreakingsomeoftheclamps.Topreventthesefailuresinthesupportsystem,itisnecessarytostudythestressstateoftheworkinganddeterminethemaximumpressurethatthecoalseamhangingwallandfootwallarecapableofsupporting.Todoso,itisessentialtogaindetailedknowledgeofthematerialsthatmakeuptherockmassofthemine,aswellasofthematerialsthatareemployedinthesupportsystem,suchasprops,woodencribsandsleepers.Weshallnowseehowtheseaspectswerestudied.4.GeologicalcharacterizationofthemineItwasinitiallynecessarytoconductadetailedanalysisofthelithologiesthatconstitutethehangingwallandfootwallofSeamC-24.Thisanalysis,whichtookplacebothinsidethemineandinAreas1,2and3oftheopen-castmine,consistedof:Astudyofthegeneralgeologyofthemine,aswellasofitshydrogeology.Visualinspectionofthematerialsinthehangingwallandfootwalloftheseam.GeotechnicalanalysisofthethreeareasidentifiedasAreas1,2and3,aswellasinthecrosscutofLevel4andinthegoafoftheworking.Measurementofthejointsanddiscontinuitiessoastocarryoutadetailedmappingofthese.Theaveragesizeoftheblockswasalsodetermined.Thedrillingofseveralboreholesof76mmindiameterinthetailgateoftheworking,withtheextractionofthecoreforgeotechnicalanalysisinthelaboratory.Weshallfirstdescribetheaspectsrelatedtothegeneralgeologyofthearea,tothengoontostudythelithologiesofthehangingwallandfootwallofSeamC-24inmoredetail.4.1.GeneralgeologyoftheareaTheanthracitecoalseamC-24oftheFeixolingroupbelongstothecoalbasinofVillablino,thegeologicalenvironmentofwhichisfundamentallymadeupofpreCambrianandPalaeolithicmaterials.ThediscordantStephanianconstitutestheVillablinocoalbasin,andismadeupofadetriticseriesthatispost-tectonicincharacter.Theconglomeratesarecomposedofwell-rounded,centimetricbouldersofquartz,sandstonesandslatesinasiliceousmatrix.Thesandstonesarelitharenites,sub-litharenites,sub-arkosesandquartzsandstonescementedbyironoxidesandchlorites.Theypossesserosivesedimentarystructures.Thecoalseamsarevariableinthickness,rangingfrom0.40to2m,reachingupto5minsomeexceptionalcases.Thetotalthicknessoftheseries,thoughvariable,rangesbetween2500and3000m.Porphyriesofupto30minthicknessappearatthebaseoftheseries,concordantwiththeseries.Theseproducedthermalmetamorphismonthesurroundinglevels,transformingthecoalintoanthracite.Fig.7showsthedistributionoflithologiesinthesurroundingsoftheFeixolinmine.Asregardsthehydrogeologyofthearea,twoverydistinctareasmaybeconsidered.Thepre-CambrianFig.7.GeologicalformationsinthesurroundingsoftheFeixolinarea.Fig.6.a)Thewoodcribsofthechuteandb)thedoublemetalframesetsofLevel4.72C.Gonzlez-Niciezaetal./InternationalJournalofCoalGeology74(2008)6792materialsaremainlymadeupofslateswithalmostnullpermeability,whichtranslatesasscantaccumulationandcirculationofundergroundwater.Thenorth-easternzoneisformedbyDevonianandCarboniferousground,presentingmajorinterestfortheformationofaquifers.Thelithologicaldifferencesbetweenformations,aswellasthetectonicswhichhasgivenrisetolargestructureswithhundredsofmetresoflimestones,aresealedbyimpermeableclayey-slateformations.Numerousspringsexistinthiszone.TheStephaniansystemalsopossessescharacteristicsthatallowwatertoaccumulate,aboveallthecoarserdetriticlevels.Althoughtheselevelsaredisconnectedfromoneanotherbynumerouslayersofimpermeableslates,theymaycommunicateasaresultofthepresenceoffaults.4.2.StratigraphyoftheareaclosetotheseamThelithologiesoftheareaclosetothecoalseamwerefirstobtainedfromthemaincrosscutsonLevels4and6,whichalloweddirectinspectionofthehangingwallandfootwallofthecoalseam.Several76mmdiameterboreholeswerealsodrilled,extractingthecoretocarryoutlaboratorytests.TheseamwascharacterizedindetailintheveindriftonLevel6atthemomentinwhichthecoalfacewasfirstcutonopeningupthechuteoftheworking.Fig.8showsthelithographiccross-sectionofthisface,inwhichdifferentlithologicalsectionscanbeappreciated.Inspectionworkwasmademoredifficultonthecrosscutsbythetimberlaggingbetweentheframesets,themetallicgrillesandthemetallicframesetsthemselves,which,apartfromhinderingvisualobservation,affectcompassmeasurements.Duetothesedifficultiesintakingmeasurementsinsidethemine,thestudywasextendedtotheopen-castoutcroppingofSeam24,inAreas1,2and3.Fig.9showsthedistributionofmaterialsinArea2.Thefollowingmaterialswerefoundinthehangingwalloftheseam:Siltstone:Thehangingwalladjoiningtheseamismadeupofsome23moffracturedlighttodarkgreyfine-grainedsiltstone,withanetworkofjointswithspacingsvaryingbetween15cmand1m.Atthesametime,themajorpresenceofcm-sizeplantfossilremains(leaves,trunks,etc.)isworthnoting,aswellascoaldeposits,moreabundantinpositionsclosertothecoalseam.Mudstone:Thesiltstoneisfollowedbya5-m-thicklayerofahighlyfracturedmaterial,whichwasdenominatedmudstone.Thisisamaterialwithatransitioncompositionbetweenmudandveryfinegrainsandstone.Themostimportantfamiliesofjointshavespacingsthatvarybetween0.4mand1m,thepossibleformationofblocksofupto1m1mbeingobserved.Greywackes:ThehangingwallofSeamC-24ismadeupofamediumgraingreywackewithanodularor“onion-like”appearance.This“onion-like”appearanceobeysthesingulardispositionoflayersthatarecentimetricalinthicknessesandofscantcompactionaroundasmall-sizedcentralnodule.Thisnodularconfigurationofthegreywackewouldfavourthecavingoftheworkingasthehydraulicpropsareremoved.Thefollowingmaterialswerefoundinthefootwalloftheseam:Shale:Thematerialsituatedimmediatelybelowthecoalseamismadeupof3090cmofgreyshale,withabundantplantremainsand,onoccasions,tracesofclay.Siltstone:Belowtheshaleisfounda50-cmthicklayerofsiltstone,whichisdarkgreyincolour,withlargeoxidationstainsandsimilarcharacteristicstothehangingwallsiltstone.Coal:Belowthesiltstone,thereisacoallayerofbetween30and50cminthickness,whosefootwallslidesrelativelyeasily,aswasobservedondifferentvisitstotheopen-castmine.Mudstone:Belowthecoallayeraretobefoundsome78mofmudstone,characterisedbypresentingoxidationstainsandmm-sizelensesofcoal.Onceagain,thisisatransitionmaterialbetweensiltstoneandsandstone.Onthebasisoftheselithologies,“coalmuds”measuringafewcentimetresinthicknessandcomposedofamixtureofcoal,clay,andshalewereidentifiedinthefootwall.Thesecoalmudsbehavelikeahighlyplasticmaterialandmightcauseproblemsofslidingintheworking,especiallyinthoseareaswithpoordrainage.Asregardsthecoal,thisismadeupofgoodqualityanthracitethatconstitutesthehangingwallveinandwhichdecreasesinqualityaswellasalternatingwithotherintermediateseamsofcoalmudandearthasitapproachesthefootwall.Thehangingwallveinis1-mthickandisfollowedbybetween70cmand1.2mofalternatingcoalmudandearth,withamixtureofbothcoalandcoalmudappearing.Thefootwallveincanbeidentifiednext,withathicknessofbetween0.5and1.3m.Beforereachingafirmfootwall,afinelayerofclaycoalmudisencountered,ofaround15cm.4.3.StudyofthejointsandsizeoftheblocksInordertocarryoutaninitialestimationofthestrengthcharacteristicsofthematerials(seeSection5.3)itisnecessarytoknowthedistributionofjointsintherockmass.Todoso,thejointspresentinthehangingwallandfootwalloftheseamwereidentifiedinthemaincrosscutsonLevels4and6aswellasintheopen-castmine.Thedirectionanddipofthesejointswasmeasured,aswellastheirspacing,persistence,opening,roughness,fillinganddegreeofmeteorization.AllthemeasurementswereinputtedintotheDIPSsoftwarepackage,withtheaimofidentifyingthemainfamiliesofjointsandgraphicallyrepresentingtheirmainplanes.Table1showsthemeanvaluesoforientationanddipofthefamiliesofdiscontinuitiesencounte
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年昆明元朔建设发展有限公司收费员招聘9人备考题库带答案详解
- 安钢总医院2026年度招聘25人备考题库含答案详解
- 2025年青海物产爆破技术服务有限公司招聘备考题库及完整答案详解一套
- 2025年跨境电商物流体系建设与优化报告
- 高中生运用地理信息系统模拟城市绿地降温效应对局部微气候影响的课题报告教学研究课题报告
- 中国煤炭地质总局2026年度应届生招聘468人备考题库及1套参考答案详解
- 2025年包头市东河区教育系统校园招聘教师19人备考题库(内蒙古师范大学考点)含答案详解
- 2025年陕西上林街道卫生院科室带头人招聘备考题库及参考答案详解一套
- 2025年大理州事业单位公开考核招聘急需紧缺人才备考题库及一套参考答案详解
- 2025年桂林市逸夫小学招聘教师备考题库及一套参考答案详解
- 12J12无障碍设施图集
- 百菌齐发-开启菇粮时代知到智慧树章节测试课后答案2024年秋汉中职业技术学院
- 膦甲酸钠的医药市场分析与展望
- 电力市场概论张利课后参考答案
- 中学语文教学设计智慧树知到期末考试答案章节答案2024年河南大学
- 超市防损培训课件
- 2024年福建省2024届高三3月省质检(高中毕业班适应性练习卷)英语试卷(含答案)
- 污水源热泵技术RBL北京瑞宝利热能科技有限公司
- 《精神病》4人搞笑小品剧本台词
- 工商银行全国地区码
- 锥齿轮加工工艺和夹具设计
评论
0/150
提交评论