




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
必修2空间几何部分公式定理总结河南省淮阳一高高一B段数学组张明选 棱柱、棱锥、棱台的表面积设圆柱的底面半径为,母线长为,则它的表面积等于圆柱的侧面积(矩形)加上底面积(两个圆),即.设圆锥的底面半径为,母线长为,则它的表面积等于圆锥的侧面积(扇形)加上底面积(圆形),即.设圆台的上、下底面半径分别为,母线长为,则它的表面积等上、下底面的面积(大、小圆)加上侧面的面积(扇环),即. 柱、锥、台的体积公式柱体体积公式为:,(为底面积,为高)锥体体积公式为:,(为底面积,为高)台体体积公式为: (,分别为上、下底面面积,为高)球的体积和表面积球的体积公式球的表面积公式 其中,为球的半径.显然,球的体积和表面积的大小只与半径有关.公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2 过不在一条直线上的三点,有且只有一个平面. 推论1 经过一条直线和直线外一点有且只有一个平面.推论2 经过两条相交的直线有且只有一个平面.推论3 经过两条平行的直线有且只有一个平面.公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4 (平行公理)平行于同一条直线的两条直线互相平行.定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.不同在任何一个平面内的两条直线叫做异面直线.空间两条直线的位置关系有且只有三种:共面直线:相交直线(在同一平面内,有且只有一个公共点);平行直线(在同一平面内,没有公共点);异面直线:不同在任何一个平面内且没有公共点.空间中直线与平面位置关系有且只有三种:直线在平面内有无数个公共点直线与平面相交有且只有一个公共点直线与平面平行没有公共点直线与平面相交或平行的情况统称为直线在平面外.两个平面的位置关系只有两种:两个平面平行没有公共点两个平面相交有一条公共直线异面直线所成的角已知两条异面直线,经过空间任一点作直线 ,把与所成的锐角(或直角)叫做异面直线所成的角(夹角).如果两条异面直线所成的角是直角,就说这两条直线互相垂直,记作.异面直线的判定定理过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线.直线与平面平行的判定定理 平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.直线与平面平行的性质定理 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线都与该直线平行.两个平面平行的判定定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.推论:一个平面内两条相交的直线分别平行于另一个平面内的两条直线,则这两个平面平行.两个平面平行的性质定理 如果两个平行平面同时和第三个平面相交,那么它们的交线平行.两个平面平行,还有如下推论:如果两个平面平行,则一个平面内的任何直线都平行于另外一个平面;夹在两个平行平面内的所有平行线段的长度都相等;如果一条直线垂直于两个平行平面中的一个,那么这条直线也垂直于另一个平面.如果一条直线和两个平行平面中的一个相交,那么它和另一个也相交.直线和平面垂直的概念如果直线与平面内的任意一条直线都垂直,就说直线与平面互相垂直,记做. 叫做垂线,叫垂面,它们的交点叫垂足.直线和平面垂直的判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.直线与平面所成的角如图,直线和平面相交但不垂直,叫做平面的斜线,和平面的交点叫斜足;,叫做斜线在平面上的射影.平面的一条斜线和它在平面上的射影所成的锐角,叫这条直线和平面所成的角.直线垂直于平面,则它们所成的角是直角;直线和平面平行或在平面内,则它们所成的角是角.两个平面垂直的判定定理 一个平面过另一个平面的垂线,则这两个平面垂直.从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的棱,这两个半平面叫二面角的面.在二面角的棱上任取一点,以点为垂足,在半平面和内分别作垂直于棱的射线,则射线和构成的叫做二面角的平面角.平面角是直角的二面角叫直二面角.判断两平面垂直的方法:判定定理;求出二面角的平面角为直角.三垂线定理:平面内的一条直线,如果和平面的一条斜线的射影垂直,那么它也和这条斜线垂直.如图:在平面内的直线若垂直于直线,则就一定垂直于平面的斜线.直线与平面垂直的性质定理 垂直于同一个平面的两条直线平行.平面与平面垂直的性质定理 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.两个平面垂直的性质还有:如果两个平面互相垂直,那么经过一个平面内一点且垂直于另外一个平面的直线,必在这个平面内;如果两个相交平面都垂直于另一个平面,那么这两个平面的交线垂直于这个平面;三个两两垂直的平面,它们的交线也两两垂直.空间平行和垂直关系的转化三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=(1-cosA)/2) sin(A/2)=-(1-cosA)/2) cos(A/2)=(1+cosA)/2) cos(A/2)=-(1+cosA)/2) tan(A/2)=(1-cosA)/(1+cosA) tan(A/2)=-(1-cosA)/(1+cosA) ctg(A/2)=(1+cosA)/(1-cosA) ctg(A/2)=-(1+cosA)/(1-cosA) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin(A+B)/2)cos(A-B)/2 cosA+cosB=2cos(A+B)/2)sin(A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和 1+2+3+4+5+6+7+8+9+n=n(n+1)/2 1+3+5+7+9+11+13+15+(2n-1)=n2 2+4+6+8+10+12+14+(2n)=n(n+1) 12+22+32+42+52+62+72+82+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 弧长公式 l=a*r a是圆心角的弧度数r 0 扇形面积公式 s=1/2*l*r 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|a|+|b| |a-b|a|+|b| |a|b-bab |a-b|a|-|b| -|a|a|a| 一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年四川省广元市英语八下期末检测模拟试题含答案
- 王者荣耀语文试题及答案
- 外科选择试题及答案
- 图书馆笔试题目及答案
- 统筹方法的试题及答案
- 2025年商业担保贷款协议参考格式
- 2025年基金持有者权益与责任协议
- 2025年数据软件协议手册
- 2025年房产租赁权策划变更协议书
- 2025年仓储管理策划与物流合作协议
- 全过程工程咨询投标方案(技术方案)
- 初中物理神奇的电磁波+物理教科版九年级下册
- GB/T 718-2024铸造用生铁
- 2024-2029年中国无溶剂复合机行业市场现状分析及竞争格局与投资发展研究报告
- 汽车维修项目实施方案
- 竞技体育人才队伍建设方案
- 《多联机空调系统工程技术规程》JGJ174-2024
- MOOC 微积分(二)-浙江大学 中国大学慕课答案
- 跨学科学习:一种基于学科的设计、实施与评价
- MOOC 动物营养学-西北农林科技大学 中国大学慕课答案
- 2020年江西省上饶市万年县中小学、幼儿园教师进城考试真题库及答案
评论
0/150
提交评论