




已阅读5页,还剩35页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1外文文献资料InternationalJournalofArtificialIntelligence&Applications(IJAIA),Vol.2,No.3,July2011DOI:10.5121/ijaia.2011.230545RealtimefacerecognitionusingadaboostimprovedfastpcaalgorithmABSTRACTThispaperpresentsanautomatedsystemforhumanfacerecognitioninarealtimebackgroundworldforalargehomemadedatasetofpersonsface.Thetaskisverydifficultastherealtimebackgroundsubtractioninanimageisstillachallenge.Additiontothisthereisahugevariationinhumanfaceimageintermsofsize,poseandexpression.Thesystemproposedcollapsesmostofthisvariance.TodetectrealtimehumanfaceAdaBoostwithHaarcascadeisusedandasimplefastPCAandLDAisusedtorecognizethefacesdetected.Thematchedfaceisthenusedtomarkattendanceinthelaboratory,inourcase.Thisbiometricsystemisarealtimeattendancesystembasedonthehumanfacerecognitionwithasimpleandfastalgorithmsandgainingahighaccuracyrate.KEYWORDSFacerecognition,Eigenface,AdaBoost,HaarCascadeClassifier,PrincipalComponentAnalysis(PCA),FastPCA,LinearDiscriminantAnalysis(LDA).1.INTRODUCTIONOverthelasttenyearsorso,facerecognitionhasbecomeapopularareaofresearchincomputervision.Facerecognitionisalsooneofthemostsuccessfulapplicationsofimageanalysisandunderstanding.Becauseofthenatureoftheproblemoffacerecognition,notonlycomputerscienceresearchersareinterestedinit,butneuroscientistsandpsychologistsarealsointerestedforthesame.Itisthegeneralopinionthatadvancesincomputervisionresearchwillprovideusefulinsightstoneuroscientistsandpsychologistsintohowhumanbrainworks,andvice2versa.Thetopicofrealtimefacerecognitionforvideoandcomplexreal-worldenvironmentshasgarneredtremendousattentionforstudenttoattendclassdailymeansonlineattendancesystemaswellassecuritysystembasedonfacerecognition.Automatedfacerecognitionsystemisabigchallengingproblemandhasgainedmuchattentionfromlastfewdecades.Therearemanyapproachesinthisfield.Manyproposedalgorithmsaretheretoidentifyandrecognizehumanbeingfaceformgivendataset.Therecentdevelopmentinthisfieldhasfacilitateduswithfastprocessingcapacityandhighaccuracy.Theeffortsarealsogoinginthedirectiontoincludelearningtechniquesinthiscomplexcomputervisiontechnology.Therearemanyexistingsystemstoidentifyfacesandrecognizedthem.Butthesystemsarenotsoefficienttohaveautomatedfacedetection,identificationandrecognition.Alotofresearchworkisgoinginthisdirectiontoincreasethevisualpowerofcomputer.Hence,thereisalotofscopeinthedevelopmentofvisualandvisionsystem.Buttherearedifficultiesinthepathsuchasdevelopmentofefficientvisualfeatureextractingalgorithmsandhighprocessingpowerforretrievalfromahugeimagedatabase.Asimageisacomplexhighdimension(3D)matrixandprocessingmatrixoperationisnotsofastandperfect.Hence,thisdirectionustohandlewithahugeimagedatabaseandfocusonthenewalgorithmswhicharemorereal-timeandmoreefficientwithmaximumpercentageofaccuracy.Efficientandeffectiverecognitionofhumanfacefromimagedatabasesisnowarequirement.Facerecognitionisabiometricmethodforidentifyingindividualsbytheirfeaturesofface.Applicationsoffacerecognitionarewidelyspreadinginareassuchascriminalidentification,securitysystem,imageandfilmprocessing.Fromthesequenceofimagecapturedbythecapturingdevice,inourcasecamera,thegoalistofindthebestmatchinthedatabase.Usingpre-storagedatabasewecanidentifyorverifyoneormoreidentitiesinthescene.Thegeneralblockdiagramforfacerecognitionsystemishavingthreemainblocks,thefirstisfacedetection,secondisfaceextractionandthethirdfacerecognition.Thebasicoverallfacerecognitionmodellooksliketheonebelow,infigure1.3Differentapproachesoffacerecognitionforstillimagescanbecategorizedintotreemaingroupssuchasholisticapproach,feature-basedapproach,andhybridapproach1.Facerecognitionformastillimagecanhavebasicthreecategories,suchasholisticapproach,feature-basedapproachandhybridapproach2.1.1HolisticApproach:-Inholisticapproach,thewholefaceregionistakenasaninputinfacedetectionsystemtoperformfacerecognition.1.2Feature-basedApproach:-Infeature-basedapproach,localfeaturesonfacesuchasnoseandeyesaresegmentedandthengiventothefacedetectionsystemtoeasierthetaskoffacerecognition.1.3HybridApproach:-Inhybridapproach,bothlocalfeaturesandthewholefaceisusedastheinputtothefacedetectionsystem.Itismoresimilartothebehaviourorhumanbeingtorecognizetheface.Thispaperisdividedintosevensections.Thefirstsectionistheintroductionpart;thesecondsectionisaproblemstatement;thethirdsectionfacerecognitiontechniques-literaturereview;thefourthsectionistheproposedmethodforfeatureextractionformafaceimagedataset,thefifthdivisionisabouttheimplementation;thesecondlastsectionshowstheresults;andthelastistheconclusionsection.2.PROBLEMSTATMENTThedifficultiesinfacerecognitionareveryreal-timeandnatural.Thefaceimagecanhaveheadposeproblem,illuminationproblem,facialexpressioncanalsobeabigproblem.Hairstyleandagingproblemcanalsoreducetheaccuracyofthesystem.Therecanbemanyotherproblemssuchasocclusion,i.e.,glass,scarf,etc.,thatcandecreasetheperformance.Imageisamulti-dimensionmatrixinmathematicsthatcanberepresentedbyamatrixvalue.Imagecanbetreatedasavectorhavingmagnitudeanddirectionboth.ItisknownasvectorimageorimageVector.4Ifrepresentsapxqimagevectorandxismatrixofimagevector.Thus,imagematrixcanberepresentedaswheretistransposeofthematrixx.Thus,toidentifytheglassinanimagematrixisverydifficultandrequiressomenewapproachesthatcanovercometheselimitations.Thealgorithmproposedinthispapersuccessfullyovercomestheselimitations.Butbeforethatletsseewhatalltechniqueshavebeenusedinthefieldoffaceidentificationandfacerecognition.3.FACERECOGNITIONTECHNIQUES3.1.FacedetectionFacedetectionisatechnologytodeterminethelocationsandsizeofahumanbeingfaceinadigitalimage.Itonlydetectsfacialexpressionandrestallintheimageistreatedasbackgroundandissubtractedfromtheimage.Itisaspecialcaseofobject-classdetectionorinmoregeneralcaseasfacelocalizer.Face-detectionalgorithmsfocusedonthedetectionoffrontalhumanfaces,andalsosolvethemulti-viewfacedetectionproblem.Thevarioustechniquesusedtodetectthefaceintheimageareasbelow:3.1.1.Facedetectionasapattern-classificationtask:Inthisfacedetectionisabinary-patternclassificationtask.Thatis,thecontentofagivenpartofanimageistransformedintofeatures,afterwhichaclassifiertrainedonexamplefacesdecideswhetherthatparticularregionoftheimageisaface,ornot.Controlledbackground:Inthistechniquethebackgroundisstillorisfixed.Removethebackgroundandonlythefaceswillbeleft,assumingtheimageonlycontainsafrontalface.Bycolor:Thistechniqueisvulnerable.Inthisskincolorisusedtosegmentthecolorimagetofindthefaceintheimage.Butthishassomedrawback;thestillbackgroundofthesamecolorwillalsobesegmented.3.1.4.Bymotion:Thefaceintheimageisusuallyinmotion.Calculatingthemovingareawill5getthefacesegment3.Butthistoohavemanydisadvantagesastheremaybebackgroundswhichareinmotion.3.1.5.Model-based:Afacemodelcancontaintheappearance,shape,andmotionoffaces3.Thistechniqueusesthefacemodeltofindthefaceintheimage.Someofthemodelscanberectangle,round,square,heart,andtriangle.Itgiveshighlevelofaccuracyifusedwithsomeothertechniques.3.2.FaceRecognitionFacerecognitionisatechniquetoidentifyapersonfacefromastillimageormovingpictureswithagivenimagedatabaseoffaceimages.Facerecognitionisbiometricinformationofaperson.However,faceissubjecttolotsofchangesandismoresensitivetoenvironmentalchanges.Thus,therecognitionrateofthefaceislowthantheotherbiometricinformationofapersonsuchasfingerprint,voice,iris,ear,palmgeometry,retina,etc.Therearemanymethodsforfacerecognitionandtoincreasetherecognitionrate.Someofthebasiccommonlyusedfacerecognitiontechniquesareasbelow:3.2.1.NeuralNetworksAneuralnetworklearningalgorithmcalledBackpropagationisamongthemosteffectiveapproachestomachinelearningwhenthedataincludescomplexsensoryinputsuchasimages,inourcasefaceimage.Neuralnetworkisanonlinearnetworkaddingfeaturestothelearningsystem.Hence,thefeaturesextractionstepmaybemoreefficientthanthelinearKarhunen-Loevemethodswhichchoseadimensionalityreducinglinearprojectionthatmaximizesthescatterofallprojectedsamples3.Thishasclassificationtimelessthan0.5seconds,buthastrainingtimemorethanhourorhours.However,whenthenumberofpersonsincreases,thecomputingexpensewillbecomemoredemanding5.Ingeneral,neuralnetworkapproachesencounterproblemswhenthenumberofclasses,i.e.,individualsincreases.3.2.2.GeometricalFeatureMatchingThistechniqueisbasedonthesetofgeometricalfeaturesfromtheimageofaface.Theoverallconfigurationcanbedescribedbyavectorrepresentingthe6positionandsizeofthemainfacialfeatures,suchaseyesandeyebrows,nose,mouth,andtheshapeoffaceoutline5.OneofthepioneeringworksonautomatedfacerecognitionbyusinggeometricalfeatureswasdonebyT.Kanade5.Theirsystemachievedapeakperformanceof75%recognitionrateonadatabaseof20peopleusingtwoimagesperperson,oneasthemodelandtheotherasthetestimage4.I.J.Coxel6introducedamixture-distancetechniquewhichachieved95%recognitionrateonaquerydatabaseof685individuals.Inthis,eachofthefacewasrepresentedby30manuallyextracteddistances.Firstthematchingprocessutilizedtheinformationpresentedinatopologicalgraphicsrepresentationofthefeaturepoints.Thenthesecondwillafterthatwillbecompensatingforthedifferentcenterlocation,twocostvalues,thatare,thetopologicalcost,andsimilaritycost,wereevaluated.Inshort,geometricalfeaturematchingbasedonpreciselymeasureddistancesbetweenfeaturesmaybemostusefulforfindingpossiblematchesinalargedatabase.GraphMatchingGraphmatchingisanothermethodusedtorecognizeface.M.Ladesetal7presentedadynamiclinkstructurefordistortioninvariantobjectrecognition,whichemployedelasticgraphmatchingtofindthecloseststoredgraph.Thisdynamiclinkisanextensionoftheneuralnetworks.Facearerepresentedasgraphs,withnodespositionedatfiducialpoints,(i.e.,exes,nose,),andedgeslabeledwithtwodimension(2-D)distancevector.Eachnodecontainsasetof40complexGaborwaveletcoefficientsatdifferentscalesandorientations(phase,amplitude).Theyarecalledjets.Recognitionisbasedonlabeledgraphs8.AjetdescribesasmallpatchofgreyvaluesinanimageI(x)aroundagivenpixelx=(x;y).Eachislabeledwithjetandeachedgeislabeledwithdistance.Graphmatching,thatis,dynamiclinkissuperiortoallotherrecognitiontechniquesintermsoftherotationinvariance.Butthematchingprocessiscomplexandcomputationallyexpensive.3.2.4.EigenfacesEigenfaceisaoneofthemostthoroughlyinvestigatedapproachestofacerecognition4.ItisalsoknownasKarhunen-Loeveexpansion,eigenpicture,eigenvector,andprincipalcomponent.L.SirovichandM.Kirby9,10used7principalcomponentanalysistoefficientlyrepresentpicturesoffaces.Anyfaceimagecouldbeapproximatelyreconstructedbyasmallcollectionofweightsforeachfaceandastandaredfacepicture,thatis,eigenpicture.Theweightsherearetheobtainedbyprojectingthefaceimageontotheeigenpicture.Inmathematics,eigenfacesarethesetofeigenvectorsusedinthecomputervisionproblemofhumanfacerecognition.Theprincipalcomponentsofthedistributionoffaces,ortheeigenvectorsofthecovariancematrixofthesetoffaceimageistheeigenface.Eachfacecanberepresentedexactlybyalinearcombinationoftheeigenfaces4.ThebestMeigenfacesconstructanMdimension(M-D)spacethatiscalledthe“facespace”whichissameastheimagespacediscussedearlier.Illuminationnormalization10isusuallynecessaryfortheeigenfacesapproach.L.ZhaoandY.H.Yang12proposedanewmethodtocomputethecovariancematrixusingthreeimageseachwastakenindifferentlightingconditionstoaccountforarbitraryilluminationeffects,iftheobjectisLambertianA.Pentland,B.Moghaddam13extendedtheirearlyworkoneigenfacetoeigenfeaturescorrespondingtofacecomponents,suchaseyes,nose,mouth.Eigenfeaturescombinesfacialmetrics(measuringdistancebetweenfacialfeatures)withtheeigenfaceapproach11.Thismethodoffacerecognitionisnotmuchaffectedbythelightingeffectandresultssomewhatsimilarresultsindifferentlightingconditions.3.2.5.FisherfaceBelhumeuretal14proposefisherfacesmethodbyusingPCAandFisherslineardiscriminantanalysistopropducesubspaceprojectionmatrixthatisverysimilartothatoftheeigenspacemethod.Itisoneofthemostsuccessfulwidelyusedfacerecognitionmethods.Thefisherfacesapproachtakesadvantageofwithin-classinformation;minimizingvariationwithineachclass,yetmaximizingclassseparation,theproblemwithvariationsinthesameimagessuchasdifferentlightingconditionscanbeovercome.However,Fisherfacerequiresseveraltrainingimagesforeachface,soitcannotbeappliedtothefacerecognitionapplicationswhereonlyoneexampleimageperpersonisavailablefortraining.3.3.FeatureExtractionTechniquesFacialfeatureextractionisnecessaryforidentificationofanindividualfaceonacomputer.Asfacialfeatures,theshapeoffacialpartsisautomatically8extractedfromafrontalfaceimage.Therecanbethreemethodsforthefacialfeatureextractionasgivenbelow:3.3.1.Geometry-basedThistechniqueisprosedbyKanada15theeyes,themouthandthenosebasearelocalizedusingtheverticaledgemap.Thesetechniquesrequirethreshold,which,giventheprevailingsensitivity,mayadverselyaffecttheachievedperformance.3.3.2.Template-basedThistechnique,matchesthefacialcomponentstopreviouslydesignedtemplatesusingappropriateenergyfunctional.Geneticalgorithmshavebeenproposedformoreefficientsearchingtimesintemplatematching.3.3.3.ColorsegmentationtechniquesThistechniquemakesuseofskincolortoisolatethefacialandnon-facialpartintheimage.Anynon-skincolorregionwithinthefaceisviewedasacandidateforeyesandormouth.Researchandexperimentsonfacerecognitionstillcontinuingsincemanydecadesbutstillthereisnosinglealgorithmperfectinrealtimefacerecognitionwithallthelimitationsdiscussedinsecondsection.Here,inthispaper,anewapproachisproposedtosomewhatovercomethelimitationswithaverylesscomplexity.4.FACIALFEATUREEXTRACTIONInmanyproblemdomainscombiningmorethanonetechniquewithanyothertechnique(s)oftenresultsinimprovementoftheperformance.Boostingisoneofsuchtechniqueusedtoincreasetheperformanceresult.Facialfeaturesareveryimportantinfacerecognition.Facialfeaturescanbeofdifferenttypes:region16,17,keypoint(landmark)18,19,andcontour20,21.Inthispaper,AdaBoost:BoostingalgorithmwithHaarCascadeClassifierforfacedetectionandfastPCAandPCAwithLDAforthepurposeoffacerecognition.Allthesealgorithmsareexplainedonebyone.4.1.FaceDetection4.1.1.AdaBoost:TheBoostingAlgorithm9AdaBoostisusedasashortformforAdaptiveBoosting,whichisawidelyusedmachinelearningalgorithmandisformulatedbyYoavFreundandRobertSchapire.Itsametaalgorithm,algorithmofalgorithm,andisusedinconjunctionwithotherlearningalgorithmstoimprovetheirperformanceofthatalgorithm(s)24.InourcaseabaBoostiscombinedwithhaarfeaturetoimprovetheperformancerate.Thealgorithm,AdaBoostisanadaptivealgorithminthesensethatthesubsequentclassifiersbuiltistweakedinfavorofinstancesofthosemisclassifiedbythepreviousclassifiers.Butitisverysensitivetonoisedataandtheoutliers.AdaBoosttakesaninputasatrainingsetS=(x1,y1).,(xm,ym),whereeachinstanceofS,xi,belongstoadomainorinstancespaceX,andsimilarlyeachlabelyibelongstothefinitelabelspace,thatisY.Hereinthispaper,weonlyfocusonthebinarycasewhenY=-1,+1.Thebasicideaofboostingisactuallytousetheweaklearnerofthefeaturescalculated,toformahighlycorrectpredictionrulesbycallingtheweaklearnerrepeatedlyprocessedonthedifferent-differentdistributionsoverthetrainingexamples.4.1.2.HaarCascadeClassifierAHaarClassifierisalsoamachinelearningalgorithmicapproachforthevisualobjectdetection,originallygivenbyViola&Jones23.Thistechniquewasoriginallyintendedforthefacialrecognitionbutitcanbeusedforanyotherobject.ThemostimportantfeatureoftheHaarClassifieristhat,itquicklyrejectsregionsthatarehighlyunlikelytobecontainedintheobject.ThecorebasisforHaarcascadeclassifierobjectdetectionistheHaar-likefeatures.Thesefeatures,ratherthanusingtheintensityvaluesofapixel,usethechangeincontrastvaluesbetweenadjacentrectangulargroupsofpixels25.Thevarianceofcontrastbetweenthepixelgroupsareusedtodeterminerelativelightanddarkareas.ThevariousHaar-like-featuresareshowninthefigure2.a.ThesetofbasicHaar-like-featureisshowninfigure2.b,rotatingwhichtheotherfeaturescanbegenerated.ThevalueofaHaar-likefeatureisthedifferencebetweenthesumofthepixelgraylevelvalueswithintheblackandwhiterectangularregions,i.e.,f(x)=Sumblackrectangle(pixelgraylevel)Sumwhiterectangle(pixelgraylevel)10Comparingwiththerawpixelvalues,Haar-likefeaturescanreduce/increasethein-class/out-ofclassvariability,andthusmakingclassificationmucheasier.TherectangleHaar-likefeaturescanbecomputedrapidlyusing“integralimage”.Integralimageatlocationofx,ycontainsthesumofthepixelvaluesaboveandleftofx,y,inclusive:Thesumofpixelvalueswithin“D”:UsingthisHaar-likefeaturesthefacedetectioncascadecanbedesignedasinthefigure4,below.InthisHaarcascadeclassifieranimageisclassifiedasahumanfaceifitpassesalltheconditions,f1,f2,fn.Ifatanystageanyofoneormoreconditionsisfalsethentheimagedoesnotcontainthehumanface.11Figure4.Thecascadeclassifierclassifiedfaceandnon-face.4.2.FaceRecognition4.2.1.PCAandFastPCA(PrincipalComponentAnalysis)Facerecognitionisoneofthenonintrusivebiometrictechniquescommonlyusedforverificationandauthentication.Localandglobalfeatures26basedextractiontechniquesareavailableforfacerecognition.Globalfeaturesextractiontechniquecalculatesco-variancematrixofinterimages27whereasauto-correlationmatrixiscomputedinlocalfeaturestechnique.PCAisamathematicalprocedurethattransformsanumberofpossiblycorrelatedvariablesintoasmallernumberofuncorrelatedvariablescalledprincipalcomponents.PCAcanbeexpressedingeneralas“alineartransformationoftheimagevectortotheprojectionfeaturevector”asgivenbelow:Y=X,where,WisthetransformationmatrixhavingdimensionKx1,YistheKxNfeaturevectormatrixandXisthehigherdimensionfacevectorobtainedbyrepresentingallthefaceimagesintoasinglevectorX=x1,x2,x3,.xNWhere,eachisafacevectorofdimension“n”obtainedfromtheMxNdimensionfaceimage28.Table1.FastPCAalgorithmforcomputingleadingeigenvectors22124.2.1LDALinearDiscriminantAnalysis(LDA)findsthevectorsintheunderlyingspacethatbestdiscriminateamongclasses.Forallsamplesofallclassesthebetween-classscattermatrixSTandthewithin-classscattermatrixSWaredefined.ThegoalistomaximizeSTwhileminimizingSW,inotherwords,maximizetheratiodet|ST|/det|SW|.Thisratioismaximizedwhenthecolumnvectorsoftheprojectionmatrixaretheeigenvectorsof(SW-1ST).Thescattermatricesarewhere,Cisthenumberofdistinctclasses,Nisthenumberofimagesforeachclassesi,th
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业排放控制与环境标准制定
- 工业旅游发展路径研究
- 工业机器人散热与节能的先进技术
- 工业污染排放的实时监控技术应用
- 工业机器人技术及产业应用分析
- 工业污染防治国际合作项目分析
- 工业自动化系统的编程与调试技术
- 工业节能与环保法规的协同推进
- 工业自动化与智能化转型战略
- 工业自动化与新材料技术的融合
- 小学信息技术五年级上册第3课《流程图描述算法》教学设计
- 市政工程计量表格样表
- 部编版六年级道德与法治上册期末复习课件
- 氢能源行业的投资机会分析
- 供电公司负责人讲安全课
- 【物理】《滑轮》(教学设计)-2024-2025学年人教版(2024)初中物理八年级下册
- 火车站高铁站消防培训
- 专项10:现代文阅读 媒体文阅读(练习)-【中职专用】2025年对口升学语文二轮专项突破(解析版)
- 降低患者跌倒的发生率
- 2024中华人民共和国学前教育法详细解读课件
- 湖北省武汉市2024年中考数学试卷(含答案)
评论
0/150
提交评论