




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
英文原文ResearchofVSCFWindPowerGenerationTrainingSystemBasedonMatlab/LabVIEW*AbstractThepaperoffersawindturbinetrainingsystem,whichhassupervisorylayerandcontrollayer.ThesupervisorylayerisbasedonAmericanNICompanysgraphicalsoftware-LabVIEWtosetupthemonitoringinterface.ThecontrollayerisbasedonMatlab/Simulinksoftwaretosimulatethewindpowergenerationsystemmodel.WithresearchingthemathematicmodelofwindturbineandanalyzingcontrolstrategyofDouble-fedinductiongenerator,avariable-speedconstant-frequency(VSCF)windpowergenerationtrainingsystemispresented.Themainoperationsofwindpowergenerationsystemhavebeenimplementedincludingcutting-incontrol,maximumpowerpointtracking(MPPT)atlowwindspeedandpowercontrol/variablepitchcontrolattheratedwindspeed.ThecorrespondingcurvesinsimulinkandLabVIEWplatformsareacquired.Andbycomparingthemthecorrectnessandfeasibilityofthetrainingsystemareproved.IndexTerms-windpowergeneration;LaboratoryVirtualInstrument;Double-fedinductiongenerator(DFIG);variable-speedconstant-frequency;I.INTRODUCTIONWindenergyasaninexhaustiblesupplyofrenewableresourceshasbecamethehotspotofinternationalcommunication.Atpresent,thevariable-speedconstant-frequencysystemiswidelyusedinwindpowergeneration.Ithasalotofadvantagessuchashighwindenergyutilizationcoefficient,security,andreliability.Becauseoftheseadvantages,windpowergenerationunithasbeenwidelyused.Moreandmorewindfarmoperatorsareneededtoacquiretheprofessionalknowledge.However,itisnotonlyaffectingthepowerproduction,butalsobeingdangerous,ifthestafftrainingonrealpowerunit.Therefore,thesoftwaretrainingsystemofwindpowergenerationbecomesanurgentneed.Besidesithasbeenwidelyrecognizedthattheuseofsimulationsystemissuitableforvocationaltraining.ThispaperpresentsatrainingsysteminwhichthecontrollayerisbasedonMatlab/Simulink9,13andthesupervisorylayerisaccordingtoLabVIEW.Theoperationresultsshowthatthetrainingsystemprovidesagoodtoolforimprovingthewindpowerknowledgeandoperationskillsofoperatorandotherlearners.II.SOFTWAREINTRODUCTIONA.BriefintroductionofLabVIEWandSimulinkLabVIEWisagraphicalprogramminglanguage.Asastandarddataacquisitionandinstrumentcontrolsoftware,itiswidelyacceptedbyindustry,academiaandresearchlaboratories.Itisspecificallydesignedtotakemeasurements,analyzedata,andpresentresultstotheuser.Moreover,LabVIEWhassuchaversatilegraphicaluserinterfaceandissoeasytoprogramwith,itisalsoidealforsimulations,presentationofideas,generalprogramming,oreventeachingbasicprogrammingconcepts.Matlabistheinteractivecomputingsoftware.ItismainlyorientedtoEngineeringandscientific.SimulinkisanadditionalcomponentofMatlab.Itcanbeusedtomodel,analysisandsimulatedynamicsystemswhichincludecontinuoussystems,discretetimesystems,hybridsystemsandetc.B.LabVIEW&SimulinkcommunicationThissystemisbasedontheSimulink/LabVIEW.Howtorealizetheinteractionoftwosoftwaresisvitalimportance.Soanexperimentisadoptedtoprovetheconvenientandtheinteraction.Concretestepsareasfollows:1)Atestmodel:Asshowninfig.1,asimulinkoff-linemodelissetedup.ThecommunicationbetweenLabVIEWandMatlab/SimulinkisaccomplishedbyaspecificallyModule-SignalProbewhichisprovidedbyNICompany.OthermodulesareprovidedbySimulink.Theysupportdragginganddouble-clickingtheiricontochangeparameters.2)Communicationpropertiesset:TheMatlab/Simulinkispseudo-real-timesimulationsoftware.However,thetrainingsystemrequiresareal-timesimulation.Forthesefactors,areal-timeapplicationisadoptedwhichallowsthesimulationsystembeingsynchronouswitharunningclock.Stepsareasfollows:Firstly,intheSimulinkwindow,selectConfigurationParameters/Solvertosetsimulationstart/stoptimeandsolveroptions.Secondly,chooseReal-TimeWorkshoptabtoselectsReal-TimeWindowsTargetasthetargetenvironmentofsystem.Andthetargetfileisgenerated.Thirdly,atReal-TimeWorkshoptab,clickBuildbuttontocreateCcode.Bycompilerlink,theexecutableapplicationsaregenerated,andcouldbedownloadedtothetargetmachine.3)CommunicationwithLabVIEW:Aftertheabovesteps,thesuperior-inferiorcommunicationhasbeenimplemented.ThedataofsimulinkcanbetransformedtothescopeofLabVIEWviathesignalprobe.Thegraphicaluserinterfaceisshowninfig.2.IIITHEMATHEMATICALMODELOF.VSCFWINDPOWERGENERATIONA.WindTurbineSimulationModelWindturbineistheprimarycomponentofwindenergyconversionsystemwhichconvertsthewindenergyintomechanicalenergy.Accordingtothewell-knownBetztheoryandaerodynamics,windenergycouldnotbeallabsorbedbythewindturbinecompletely.Theoutputpowerofwindturbineisdeterminedbyalotoffactors,suchaspowercoefficient(Cp),airdensity(),radiusofthewindwheel(R)andwindspeed(v).Thepowercapturedbythewindturbineisobtainedas:32vRCPpm),(1)WhereCpisanonlinearfunctionofthepitchangle()andthetip-speedratio().Itishighlydependentontheconstructivefeaturesandcharacteristicsoftheturbine.AnempiricalformulaisintroducedtodescribeCpasshowninequation(2).)3(0184.3.15)(sin)067.4(),pC(2)vR(3)Where:istheangularvelocityofwindturbine,w1)TrackingtheLargestWindEnergy:Forvariablespeedoperation,eachwindspeedhasamaximumpowerpoint.Byequations(1)(3)themaximumoutputpowerofwindturbineisobtainedas:350maxax)1(),(2outpRCP(4)Where:istheinstallationangleofwindturbine;istheoptimaltipspeed0outratio;maxisthelargestwindenergyutilizationcoefficient.CpmaxWhenthewindturbineisrunningbelowtheratedwindspeed,theoutputpowerofDFIGdoesnotreachtheratedpoint.Windenergyshouldbeconvertedintoelectricalenergyasmuchaspossible.TheMaximumPowerPointTracking(MPPT)strategyisintroducedtotrackthelargestwindenergy.sP1max(5)Thereferenceactivepowerofstatorcanbeobtainedinequation(5).Bytrackingtheactivepowersetpoint,themaximumpowerpointisacquired.12)PitchAngleControl:Whenthewindspeedsexceededtherated,theoutputpowerofDFIGshouldberestrictedtotheratedvalue.Thisisachievedbyincreasingthepitchangle.Asaresult,theutilizationratioofwindpowerreduces,andtheoutputpowercorrespondinglydecreases.Thevariablepitchcontrolstrategyisadoptedathigh-windspeed,asshowninFig.3.Thecontrollerisatypicalproportionintegrationcontroller.AccordingtotheerrorbetweenthereferenceandthefeedbackpowervaluePIcontrolleroutputsareferenceincrementvalueofbladepitchangle.Becausethebladesresponsetothevariable-pitchcommandsneedstime,thispaperabstractsthepitchcontrolsystemasaninertialelement.Theequationsareasfollows:dt(6)0(7)Where:istheinertialtimeconstant,isthepitchangleincrement.B.DFIGSimulationModelDFIGisoneofthemaingeneratorsinthewindfarms,whichproducesconstantfrequencypowertothegrid.TheexcitationcurrentoftherotorissuppliedbyPWMconverterinwhichenergycanflowbidirectional.ForatypicalDFIG,thepowerconvertersareconnectedtotherotor.Becauseofthesliplimitation,thecaptureoftheconverterformsabout25%to30%ofthemachineratedcapture.ThedynamicmathematicalmodelofDFIGcanbederivedinthreephasesstaticcoordinatesandsynchronousrotatingdqcoordinates.VectorformofDFIGindqcoordinatesareanalyzedandcontrolled.Theequationsareasfollows(statorbehavesasageneratorandrotorbehavesasamotor).statorvoltageequations:qsdsqsqsdPiRu1(8)Rotorvoltageequations:qrdrqrrdiu1(9)Statorfluxsequations:qrmsqsddiL(10)Rotorfluxsequations:qrsmqrddiL(11)Torqueequation:)()(drqsrdsmnqsdsqneiiPiiPT(12)Equations(8)to(13)aresetofdifferentialequationsmakingupofafifth-ordermodelwhichdescribesthedynamicbehaviorofDFIG.Thevoltages,currentsandfluxlinkagesareexpressedbythed-axisandq-axiscomponentsinsynchronousrotatingreferenceframe.Intheactualwindfarm,whenthewindspeedexceedsthestartwindspeed,cutting-incontroliscarriedout.Ifdirectlyconnectedtogrid,atremendousimpactcurrentisproducedwhichwillaffecttheservicelifeofDFIGseriously.Meanwhilethevoltagefluctuationiscaused.DFIGisexactlyrunningatsynchronousspeedaftercutting-ingrid.Thus,cutting-incontrolstrategyisintroducedinthispapertoeliminatetheproblems.Beforenoloadcutting-in,thecontrolinformationisgotnotonlyfromgridside,butalsofromstatorside.Thecontrolstrategyisrelativelycomplex.Therefore,theideaofrespectivemodelingandtimesharingsimulationisadoptedtoimplementsimulationsofthewholeprocess.Inthewayofcutting-in,theno-loadandon-loadmodelsarewidelyused,wheretheon-loadmodelisnamedtheDFIGmodelinthispaper.InDFIGmodel,neglecttheinfluenceofthestatorfluxlinkagestransientprocessandorientthed-axisofthesynchronousframetothedirectionofthestatorfluxvector.Theequationsareasfollows:sdqsdsu,0,(13)Thephasedifferencebetweenthestatorvoltagevectorandthestatorfluxvectoris90,asshowninFig.4.Whereisthesynchronousangularvelocityofthegrid;1istheelectricangularvelocityoftherotor.rSubstitutingintoequation(13),therealandreactivepowersusqds,0ofstatoraregivenas:dsqiuQP1(14)Thestatoractivepower-P1isproportionaltotheq-axisstatorcurrent,Theiqsreactivepower-Q1isproportionaltothed-axisstatorcurrent.Inthatcase,dsDecouplingcontroloftheactiveandreactivepowerisimplemented.Substitutingintoequation(10)andequation(9),therotor,0qsdsvoltageequationsaregivenas:qrqrrdduu(15)Inno-loadmodel,thereisnocurrentinDFIGstatorwindings.Sothestatorcurrentofd,qaxis(ids,iqs)arezero.Substitutingids=iqs=0inequations(8)to(13),themathematicmodelofDFIGareobtained.Andtheactualstatorvoltagecanbeeasilycalculated.Inthiscondition,equation(8)canbesimplifiedasfollows.dsqsqsssdstu1(16)Ifthefrequency,amplitudeandphaseerrorsbetweenthestatorvoltageandvoltageofpowergridfallintotheallowablerange,thecutting-incontrolcanbecarriedout.AftertheDFIGcutinthegridsuccessfully,theon-loadmodelanditscontrolstrategybegintowork.Becauseoftheno-loadmodelandon-loadmodelaredifferent.Inordertoswitchthetwosystemssmoothly,aswitchingsystemisdesignedasshowninfig.5.Thepoint1correspondstocutting-incontrolsubsystem.Atthattime,theDFIGsoutputpoweraswellasthestatorcurrent(ids,iqs)arezero.Whenswitchedtothepoint2thepowercontrolsubsystembeginstowork.IV.VSCFWINDPOWERGENERATIONSIMULATIONIMPLEMENTATIOIntermsofdifferentwindconditions,theoperationstateofVSCFwindpowergenerationsystemscanbedividedintothreeregions.Theyarethestartingstage,thelowwindstageandthehighwindspeedstage.Eachregionhasitsowncontrolmissionandcontrolstrategy.Thespecificprogramflowdiagramisshowninfig.6.AccordingtothemathematicalmodelsofthewindturbineandDFIGabove,thesimulationmodelofthetrainingsystemisconstructedinthesimulinkplatformofthematlabsoftwareasshowninfig.7.Therearefoursubsystems,bythenameofwindturbinemodel,DFIGno-loadmodel,DFIGmodel,andVariablepitchcontrolmodel.Beforeconnectingwithpowergrid,DFIGno-loadmodelisenabled,DFIGmodelisholdon.Onthecontrary,afterconnectionwiththepowergridtheDFIGmodelwillbeineffect,buttheno-loadmodelwillbeprohibited.Whenwindspeedislowerthantheratedwindspeed,theMPPTstrategyworkstokeeptheoptimaltipspeedratioandgainthemaximumwindenergy.Whenthespeedishigherthantherated,thevariablepitchcontrolstrategyworks.Itincreasespitchangle,limitstheabsorptionofwindenergy,andkeepstheDFIGpowerattheratedpoint.Duringthesimulation,theinitialvalueofwindspeedis5m/s,at3sthespeedstepsto10m/s.Before3sthewindspeedhadexceededthecutting-inwindspeedwhichis3m/sinthissystem.Itmeetstherequirementsofcutting-in.Thecutting-incontrolstrategybeginstoregulatethestatorvoltage.Whentheerrorofthevoltagemeattherequirement.TheDFIGwillcutintothegrid.ThecomparisonofthestatorvoltageandvoltageofpowergridisshowninFig.8.Fig.8Thewaveformofcutting-insystemFig.9,10areofflinesimulationcurvesoftheVSCFwindpowergenerationinsimulink.Beforecutting-ingrid,DFIGrunsattheidlingstate.Itsoutputpoweriszero.Aftercutting-incontrol,DFIGsmoothlyswitchestotheloadmodel.In03s,thewindspeedis5m/s.TheMPPTcontrolstrategyisappliedtokeepthepowercoefficientatthemaximumpoint.Asshowninfig.9,Cpisatpeakvalueandthepitchanglemaintainsatafixedvalue.Inthemeantime,DFIGrunsatSub-synchronizationstatuswhichhasbeenshowninfig.10(a).Atthemomentof3s,thewindspeedstepsto10m/s.Itishigherthantheratedwindspeed.Therotatespeedoftherotorexceedsthesynchro-speedandoperatesintheSuper-synchronousstatus.Atthesametimethepitchcontroldevicebeginstowork.Byadjustingthebladepitch,theairflowonthebladeattackedanglechangesandtheaerodynamicpowerofwindturbineislimitedtothenormallevel.ThustheoutputpowerofDFIGwillmaintainattheratedvalue.Howeverthewindpowerutilizationcoefficientdecreases.Fig.11showsthehuman-machineinterfacethatiswrittenbyLabVIEW.ItisthemainHMIofthetrainingsystemwhichcontainsdifferentpartsoftheDFIGpowerunitandsomekeyparameters.Thesimulinkmodelwhichhasbeenintroducedabovecanberecognizedasthevirtualequipment.ThesupervisoryandcontrollayercouldbeconnectedbySITConnectionManagerofLabVIEW.Thereal-timesimulationcurvesofVSCFwindpowergenerationtrainingsystemareshowninFig.12.Caparisoningwithfig.9andfig.10,thetrendofcurvesisthesame.Theresultsprovetheinteractivityofthetwolayersiscorrectness.Becausethetimeofsimulationiscontrollable;usercansetthetrainingtimetomeetstherequirementsoftheactualtrainingsystem.V.CONCLUSIONThispapercombinesSimulinkmodelwithLabVIEWinterfacetoimplementVSCFwindpowergenerationtrainingsystem.Incontrollayer,thesimulationmodelinthesimulinkplatformisproposed,whichisbasedontheactualwindpowergeneration.Ithelpsthestafftounderstandtheoperationconditionsoftheunit,andbefamiliarwiththeperformance.Italsohelpsthedevelopmentengineerstolearnnewalgorithms.Becausetherearealotofdangeranddifficultyforlearningintheactualwindpowerunit,suchasthedangerofarbitrarilychangingtheparameters,doingwrongoperations,thedifficultyoflearningwindturbinebydirectlycheckingthenacelleunderpooroutdoorenvironmentandact.Insupervisorylayer,avividHMIisprovidedtothewindpowertrainingsystem,whichhelpstraineetoquicklygraspthebasicknowledgeofwindpowergeneration,andfamiliarizewiththeworkenvironmentandemergencyhandling.ACKNOWLEDGMENTThisworkiscarriedoutasapartoftheNationalScienceFoundationofChina(50677021)sponsoredbyDetectionTechnologyandAutomationDevicesLabofNorthChinaElectricPowerUniversity.中文翻译基于Matlab/LabVIEW的变速恒频风力发电培训系统研究摘要:本文提供了一个风电场的培训系统,它有监控层和控制层组成。监控层是基于美国NI公司的图形软件LabVIEW的设立监控接口。控制层是基于Matlab/Simulink软件来模拟风力发电系统模型。通过研究风力机的数学模型和双馈感应电机的控制策略,变速恒频风力发电培训系统被建立。变速恒频发电系统主要包括并网控制,在低风速下的最大风能捕捉及不同风速下的变桨距控制。相应的曲线由Simulink和LabVIEW平台获得。通过对它们的比较,证实了系统的正确性与可行性。关键词:风力发电;实验室虚拟仪器;双馈感应电机;变速恒频引言风能作为一种取之不尽,用之不竭的可再生资源,已经成为国际关注的热点。目前,变速恒频系统已被广泛的用于风力发电。它有许多优点,如较高的风能利用率、安全、可靠,由于这些优点,风力发电机组被广泛的应用。越来越多的风电场运营商需要去获得更多的专业知识。因为,对于现实的风电场工作人员的培训,它不仅影响风电的产量,也被认为是危险的。因此,风力发电的软件培训已经成为迫切需要。现在被广泛认可的职业培训是仿真系统的应用。本文所介绍的培训系统,控制层是基于Matlab/Simulink,监控层是基于LabVIEW。运行结果表明,此培训系统是一个为经营者和其他学习者提高其风力发电知识及操作技能的好工具。软件介绍ALabVIEW和Simulink的简介LabVIEW是一种图形化编程语言。作为一个标准的数据采集和设备控制软件,已被工业界,学术界及研究实验室所接受。它经过专门的设计进行测量、数据分析,将结果传递给用户。此外,LabVIEW有这样一个多功能的图形用户界面,易于编程及仿真。Matlab是交互式计算软件。它主要是面向工程和科学运算。Simulink是Matlab的一个附加的组件。它可以用来建模、分析及仿真其中包括连续系统,离散时间系统,混合动力系统等。BLabVIEW和Simulink的实时通讯该系统基于Simulink/LabVIEW。如何实现两个软件的交互是至关重要的。所以我们我们通过实验来证明它们的便捷性与交互性。其具体步骤如下:1)测试模式:如图1所示,一个Simulink的离线模型被建立。Matlab和LabVIEW之间的联系由NI公司提供的一个叫信号探针的特别单元获得。其它单元由Simulink提供。他们支持拖放,双击其图标可以更改参数。2)通讯属性:MATLAB/Simulink的是伪实时仿真软件。然而,培训系统需要实时仿真。由于这些因素的存在,因此要创建实时应用,让仿真系统与一个实时时钟同步运行。步骤如下:首先,在Simulink的窗口中,选择ConfigurationParameters中的Solver选项卡来设定仿真的起始时间及步长,以及对应模式下的仿真算法。其次,选择Real-TimeWorkShop选项卡,选择Real-TimeWorkShopTarget作为系统实时仿真的目标环境。第三,在Real-TimeWorkShop选项卡下,点击“Build”按钮,创建“C”代码。并对其进行编译、链接生成可执行的目标应用程序,然后将其下载到目标机上。3)与LabVIEW的通信:经过上述步骤,低一级的联络已经生成,Simulink里的数据可以通过信号探针传递到LabVIEW的示波器中。图形用户界面如图2所示。变速恒频风力发电系统的数学模型A.风力机模型风力机是风力发电系统实现能量转换的首要部件,它将风能转换为机械能。根据著名的贝兹理论和空气动力学,风能不可能完全被风力机所吸收。风力机的输出功率由许多因素决定,如风能利用率,空气密度,风机风叶半径,风速等。由风力机捕获的风能可以由下式来表示:32vRCPpm),(1)其中风能利用系数是桨距角和叶尖速比的非线性函数。它取决于风力机的构造及特性。我们通过公式来描述,如图等式2所示:p)3(0184.3.15)(sin)067.4(),pC(2)vR(3)其中为风轮角速度。w1)最大风能追踪:转速不同,风力机输出功率不同,但总有一个固定的最佳转速点,通过等式(1)和(3),我们可以得到风力机的最大输出功率为:350maxax)1(),(2outpRCP(4)其中:为风机安装角,为最佳叶尖速比,为最大风0outpmax能利用系数。当风力机低于额定风速运行时,双馈感应电机没有达到额定的输出功率。风能尽可能的被转换为电能,最大功率点追踪用来捕获最大风能。sP1max(5)定子参考有功功率可用等式(5)来表示,通过跟踪有功功率设定点1,最大功率点可以被获得。P12)变桨距控制:当风速超过额定值时,双馈感应电机的输出功率应该被限制在额定值,可以通过增大桨距角来实现。这样,风能的利用率降低,电机的输出功率也相应的降低。变桨距控制是在高风速时采用的,如图3所示。控制器是典型的比例积分控制器,由功率的参考值和反馈值的差值,PI控制器输出一个桨距角的参考增量值。由于从指令的发出到桨叶输出相应的角度需要一定的时间,所以可以将变桨距系统抽象成一个惯性环节,等式如下:dt(6)0(7)其中:为惯性时间常数,为桨距角的实际变化量。B.双馈感应电机仿真模型双馈感应电机是风电场中主要的发电机之一,它为电网提供恒频的电能,转子的励磁电流有PWM变换器提供,可以实现能量的双向流动。对于一个典型的双馈感应电机,能量变化器被连接到转子侧。双馈电机的动态数学模型可有三相静止坐标系和两相同步旋转坐标系dq得到,双馈电机在坐标系下的矢量形式易于分析和控制。方程如下(定子dq采用发电机,转子采用电动机)statorvoltageequations:qsdsqsqsdPiRu1(8)Rotorvoltageequations:qrdrqrrdiu1(9)Statorfluxsequations:qrmsqsddiL(10)Rotorfluxsequations:qrsmqrddiL(11)Torqueequation:)()(drqsrdsmnqsdsqneiiPiiPT(12)等式(8)到(13)描述了双馈电机的动态行为,电压、电流和磁链之间的联系由两相旋转同步坐标系下的轴和轴分量组成。在实际的风电场中,当风速达到风力机的启动风速时,并网控制被执行,如果直接并网,会对电网产生较大的电流冲击,损坏发电机,同时电网电压将大幅的波动,双馈电机在并网后以同步速运行,因此,并网控制策略被介绍以消除此类问题。在空载并网前,控制信息不仅从网侧获得,也从定子侧获得。控制策略相当复杂,因此各自的模型被建立以实现整个仿真的进程。在并网的过程中,空载和带载模型被广泛的应用,在本文中,带载模型被称为双馈电机模型。在双馈电机模型中,忽略定子磁链瞬态过程的影响,以同步坐标系下的轴方向为定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国红尾扯旗鱼项目创业计划书
- 中国桑蚕养殖项目创业计划书
- 中国开源软件项目创业计划书
- 中国集群通信系统项目创业计划书
- 2025年学校教职工公寓租赁合同样本示例
- 中国牛肝菌项目创业计划书
- 中国奶山羊养殖项目创业计划书
- 中国干黄花菜项目创业计划书
- 中国豆制品加工项目创业计划书
- 网络营销与品牌建设-洞察阐释
- 2024年新高考II卷高考历史试卷(真题+答案)
- 2024年黑龙江医疗卫生事业单位招聘(药学)备考试题库(含答案)
- 2024年新高考1卷数学真题试卷及答案
- 湖北省武汉市洪山区2023-2024学年七年级下学期期末考试语文试卷
- 施工现场水电费协议
- 畜产品加工学复习资料
- 预防接种门诊验收表4-副本
- 离心泵的结构与工作原理通用课件
- 畜牧业的生物安全与疫情防控
- 国开电大可编程控制器应用实训形考任务5
- 关于皮肤科药物知识讲座
评论
0/150
提交评论