全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AdvanceJournalofFoodScienceandTechnology2(6):325-327,2010ISSN:2042-4876MaxwellScientificOrganization,2010Submitteddate:October22,2010Accepteddate:November13,2010Publisheddate:November30,2010CorrespondingAuthor:M.B.Lak,DepartmentofAgriculturalMechanization,ScienceandResearchBranch,IslamicAzadUniversity,Tehran,Iran325AppleFruitsRecognitionUnderNaturalLuminanceUsingMachineVision1M.B.Lak,2S.Minaei,3J.Amiriparianand2B.Beheshti1DepartmentofAgriculturalMechanization,2DepartmentofAgriculturalMachineryEngineering,ScienceandResearchBranch,IslamicAzadUniversity,Tehran,Iran3DepartmentofMechanicsofAgriculturalMachinery,FacultyofAgriculture,Bu-AliSinaUniversity,Hamedan,IranAbstract:Inthisstudy,edgedetectionandcombinationofcolorandshapeanalyseswasutilizedtosegmentimagesofredapplesobtainedundernaturallighting.Thirtyimageswereacquiredfromanorchardinordertofindanappleineachimageandtodetermineitslocation.Twoalgorithms(edgedetection-basedandcolor-shapebased)weredevelopedtoprocesstheimages.Theywerefiltered,convertedtobinaryimages,andnoise-reduced.Edgedetectionbasedalgorithmwasnotsuccessful,whilecolor-shapebasedalgorithmcoulddetectapplefruitsin83.33%ofimages.Keywords:Appleharvesting,color-shapebasedalgorithm,edgedetection,machinevisionINTRODUCTIONFreshfruitsharvestingisasensitiveoperation.Itsprofitabilitymaybeinfluencedbylaborinaptitude,costsandunavailability,lowqualityharvesting,andoperationuntimeliness.So,mechanizedharvestingoperationmaysolvetheproblems.MechanizationofapplefruitsharvestingincountrieslikeIranthatisthe4thappleproducerintheworld(FAO,2009)isanessentialneed.Mechanizedfruitharvestingmaybemechanicallyorautomatically.Problemsaccompanyingwithmechanicalharvestingresultedindevelopmentofroboticharvestingmethods,therebyprototypemachinevisionbasedharvestershasbeenincreasinglybeingdeveloped.ParrishandGoksel(1977)andBulanonandKataoka(2010)studiedroboticapplefruitharvesting.Theautomatedharvestingsystemshouldperformthefollowingoperations:(1)recognizeandlocatethefruit;(2)reachforthefruit;(3)detachthefruitwithoutcausingdamagebothtothefruitandthetree;and(4)moveeasilyintheorchard(Sarig,1990).Thefirstoperationneedsdevelopmentofappropriatemethodstodetectandlocatethefruits.Usingphotometricinformationbased(SchertzandBrown,1968)andinfraredlaserrangefinding(Jimenezetal.,2000)methodsweredeveloped.While,imageprocessingbasedmethodshavebeenusedtodetectandlocatedthefruits(BulanonandKataoka,2010;Satish,2007;Harreletal.,1989).Bothintensity/colorpixel-basedandshape-basedanalysismethodswereappropriatestrategiesfortherecognitionoffruits,butsomeproblemsarosefromthevariabilityofthesensedimageitselfwhenusingCCDcameras,whichareverysensitivetochangesinsunlightintensityaswellasshadowsproducedbytheleaves(Jimenezetal.,2000).SincenoresearchhasbeenreportedonroboticappleharvestinginIran,thispaperfocusesonrecognitionofapples,asthefirststageofappleroboticharvesting.Recognitionofapplefruitsusingmachinevisionundernaturaldaylightconditionswastheobjectiveofthisstudy.ThirtyimagesofRedDeliciousapplecanopywereselectedrandomlyfromphotostakenofappletreesinautumn.TheimagesweretakenfromHamedangroves,inIran.MATERIALSANDMETHODSThirtydigitalimageswereobtainedunderuncontrolleddaylightconditions.Imageframeswere30722304pixelsintheJPEGformat.Adigitalcamera(Sony,DSC-H5,ColorCCDCamera)wasusedtoacquiretheRGBimages.Imageprocessingalgorithm:Thegoalwasfindinganappleineachimageobtainedinuncontrolledlightingconditions.Inordertosegmenttheacquiredimages,twoalgorithmsweredeveloped:edgedetectionbasedandcolor-shapebased.Edgedetection-basedalgorithm:Initialconsiderationsshowedthatthegreengray-scaleimageincludedmostofAdv.J.FoodSci.Technol.,2(6):325-327,2010326thedesiredobjects.Canny(1986)methodwasusedtodeterminetheedgesofapplesingreengray-scaleimage(Fig.1b).Color-shapebasedalgorithm:Thealgorithmwasimplementedbasedonthefollowingsteps:CTheimageswerefirstenhanced.AGaussianlow-passfilterwasusedtoreducethenoiseasmuchaspossible.NoiseportendstounequalcolorintensitydistributionintheoriginalimagesthatformedshadesandshinyregionsintheimagesTheGaussianfilterwasa250250pixelmatrixwithstandarddeviationsof200,whichlimitimagefrequenciestolessthan200MegaHertz(MHz).Filteredimageswerenoise-reducedbyremovinghighfrequencies(morethan200MHz).Filteringtheimagecausedblurringwhichnoisewasreduced(Fig.2a)CFilteredimageswerethenconvertedtobinaryforminordertobeprocessed(Fig.2b)CBinaryimageswereprocessedtoreducetheexistingnoiseafterconvertingimages.Inthisstage,noisewasdefinedastheareasdetectedasfeaturesotherthanapples.Thisstageoftheprojectisshape-basedprocessingofcolor-basedprocessedimages(Fig.2c)CBinary,noise-removedimageswerelabeledtoextracttheapple(Fig.2d)(a)(b)Fig.1:Edgedetectionbasedalgorithm.a)Originalimage,b)Edge-detectedimage(a)(b)(c)(d)Fig.2:Color-shapebasedalgorithm.a)Filteredimage,b)Binaryimage,c)Noise-reducedbinaryimage,d)LabeledimageAdv.J.FoodSci.Technol.,2(6):325-327,2010327RESULTSANDDISCUSSIONThemainideawastodevelopageneralalgorithmundervariousnaturallightingconditions.Thereby,nosupplementallightingsourcewasusedtocontroltheluminance.Sincetheimageswereacquiredunderuncontrollednaturaldaylightconditions,theyincludedtreecanopiesincludingtreebranches,leaves,fruits,sky,etc.Eachobjectoftheimagehasitsownedges,makingimagesetsofedgesofwhichtheappleisjustasubset.So,edgedetectionalgorithmwasnotsuccessful(Fig.1).Color-shapebasedalgorithmdetectedtheimageobjectsintheimagesbetter;however,itwasmorecomplicatedthantheedgedetection.Thestageofcolorprocessingblurredtheimageanditsoutputwasanimagewithlowcontrasthavingdistributedcolors(Fig.2a).Thus,theimagewasnoise-reducedinwhichthenumberofobjectswerelessthanthattheoriginalimage.Convertingtheimagetobinaryformandshape-basedanalysismadethenoiseaslowaspossible(Fig.2b,c).Color-shapebasedalgorithmwasabletodetecttheapplesin25of30images.Inotherwords,theaccuracyofthealgorithmwas83.33%.Figure2showstheprocedureofcolor-shapebasedalgorithm.CONCLUSIONInthisstudy,twoalgorithmsweredevelopedandcomparedtodetectoneappleineachimage.Nolightingcontrolwasexercisedtostandardizeluminanceoftheacquiredimages.However,edgedetectionbasedmethodwasnotsuccessful;color-shapebasedalgorithmwasabletodetectapplesin83.33%ofimages.REFERENCESBulanon,D.M.andT.Kataoka,2010.FruitdetectionsystemandanendeffectorforroboticharvestingofFujiapples.Agric.Eng.Int.CIGRJ.,12(1):203-210.Canny,J.,1986.Acomputationalapproachtoedgedetection.IEEET.PatternAnal.,8(6):679-698.FAO,2009.FoodandAgricultureOrganizationOfficialWe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年1月福建省普通高中学业水平合格性考试英语仿真模拟试卷02(春季高考适用)考试版及全解全析
- 中小学爱国主义教育课程教案范本
- 小学英语词汇发音专项训练试卷
- 汽车维修服务标准操作程序手册
- 幼儿园安全意识培养活动方案
- 2025年教育智能穿戴设备健康数据隐私保护报告
- 云南省通海县三中2026届高一化学第一学期期末复习检测试题含解析
- 木材纳米改性的微观机制研究-洞察及研究
- 安徽省皖西南联盟2026届化学高三上期末统考模拟试题含解析
- 个性化竖排文本对话系统的情感与意图识别-洞察及研究
- 2025年度食品安全员考试复习题库(答案+解析)
- 学堂在线 创业导引-与创业名家面对面 期末考试答案
- 中国茶马古道课件
- 认知障碍的护理查房
- 礼盒车间质量管理制度
- 2025年湖北省武汉市黄陂区中考语文三模试题(含答案)
- 现代家政服务与管理专业教学标准(中等职业教育)2025修订
- 铁道交通运营管理专业职业生涯规划书5200字数
- 种子学试题及答案
- 中文十级考试试题及答案
- 2025年安徽省农业职业技能大赛(水生物病害防治员)备赛试题库(含答案)
评论
0/150
提交评论