


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AdvanceJournalofFoodScienceandTechnology2(6):325-327,2010ISSN:2042-4876MaxwellScientificOrganization,2010Submitteddate:October22,2010Accepteddate:November13,2010Publisheddate:November30,2010CorrespondingAuthor:M.B.Lak,DepartmentofAgriculturalMechanization,ScienceandResearchBranch,IslamicAzadUniversity,Tehran,Iran325AppleFruitsRecognitionUnderNaturalLuminanceUsingMachineVision1M.B.Lak,2S.Minaei,3J.Amiriparianand2B.Beheshti1DepartmentofAgriculturalMechanization,2DepartmentofAgriculturalMachineryEngineering,ScienceandResearchBranch,IslamicAzadUniversity,Tehran,Iran3DepartmentofMechanicsofAgriculturalMachinery,FacultyofAgriculture,Bu-AliSinaUniversity,Hamedan,IranAbstract:Inthisstudy,edgedetectionandcombinationofcolorandshapeanalyseswasutilizedtosegmentimagesofredapplesobtainedundernaturallighting.Thirtyimageswereacquiredfromanorchardinordertofindanappleineachimageandtodetermineitslocation.Twoalgorithms(edgedetection-basedandcolor-shapebased)weredevelopedtoprocesstheimages.Theywerefiltered,convertedtobinaryimages,andnoise-reduced.Edgedetectionbasedalgorithmwasnotsuccessful,whilecolor-shapebasedalgorithmcoulddetectapplefruitsin83.33%ofimages.Keywords:Appleharvesting,color-shapebasedalgorithm,edgedetection,machinevisionINTRODUCTIONFreshfruitsharvestingisasensitiveoperation.Itsprofitabilitymaybeinfluencedbylaborinaptitude,costsandunavailability,lowqualityharvesting,andoperationuntimeliness.So,mechanizedharvestingoperationmaysolvetheproblems.MechanizationofapplefruitsharvestingincountrieslikeIranthatisthe4thappleproducerintheworld(FAO,2009)isanessentialneed.Mechanizedfruitharvestingmaybemechanicallyorautomatically.Problemsaccompanyingwithmechanicalharvestingresultedindevelopmentofroboticharvestingmethods,therebyprototypemachinevisionbasedharvestershasbeenincreasinglybeingdeveloped.ParrishandGoksel(1977)andBulanonandKataoka(2010)studiedroboticapplefruitharvesting.Theautomatedharvestingsystemshouldperformthefollowingoperations:(1)recognizeandlocatethefruit;(2)reachforthefruit;(3)detachthefruitwithoutcausingdamagebothtothefruitandthetree;and(4)moveeasilyintheorchard(Sarig,1990).Thefirstoperationneedsdevelopmentofappropriatemethodstodetectandlocatethefruits.Usingphotometricinformationbased(SchertzandBrown,1968)andinfraredlaserrangefinding(Jimenezetal.,2000)methodsweredeveloped.While,imageprocessingbasedmethodshavebeenusedtodetectandlocatedthefruits(BulanonandKataoka,2010;Satish,2007;Harreletal.,1989).Bothintensity/colorpixel-basedandshape-basedanalysismethodswereappropriatestrategiesfortherecognitionoffruits,butsomeproblemsarosefromthevariabilityofthesensedimageitselfwhenusingCCDcameras,whichareverysensitivetochangesinsunlightintensityaswellasshadowsproducedbytheleaves(Jimenezetal.,2000).SincenoresearchhasbeenreportedonroboticappleharvestinginIran,thispaperfocusesonrecognitionofapples,asthefirststageofappleroboticharvesting.Recognitionofapplefruitsusingmachinevisionundernaturaldaylightconditionswastheobjectiveofthisstudy.ThirtyimagesofRedDeliciousapplecanopywereselectedrandomlyfromphotostakenofappletreesinautumn.TheimagesweretakenfromHamedangroves,inIran.MATERIALSANDMETHODSThirtydigitalimageswereobtainedunderuncontrolleddaylightconditions.Imageframeswere30722304pixelsintheJPEGformat.Adigitalcamera(Sony,DSC-H5,ColorCCDCamera)wasusedtoacquiretheRGBimages.Imageprocessingalgorithm:Thegoalwasfindinganappleineachimageobtainedinuncontrolledlightingconditions.Inordertosegmenttheacquiredimages,twoalgorithmsweredeveloped:edgedetectionbasedandcolor-shapebased.Edgedetection-basedalgorithm:Initialconsiderationsshowedthatthegreengray-scaleimageincludedmostofAdv.J.FoodSci.Technol.,2(6):325-327,2010326thedesiredobjects.Canny(1986)methodwasusedtodeterminetheedgesofapplesingreengray-scaleimage(Fig.1b).Color-shapebasedalgorithm:Thealgorithmwasimplementedbasedonthefollowingsteps:CTheimageswerefirstenhanced.AGaussianlow-passfilterwasusedtoreducethenoiseasmuchaspossible.NoiseportendstounequalcolorintensitydistributionintheoriginalimagesthatformedshadesandshinyregionsintheimagesTheGaussianfilterwasa250250pixelmatrixwithstandarddeviationsof200,whichlimitimagefrequenciestolessthan200MegaHertz(MHz).Filteredimageswerenoise-reducedbyremovinghighfrequencies(morethan200MHz).Filteringtheimagecausedblurringwhichnoisewasreduced(Fig.2a)CFilteredimageswerethenconvertedtobinaryforminordertobeprocessed(Fig.2b)CBinaryimageswereprocessedtoreducetheexistingnoiseafterconvertingimages.Inthisstage,noisewasdefinedastheareasdetectedasfeaturesotherthanapples.Thisstageoftheprojectisshape-basedprocessingofcolor-basedprocessedimages(Fig.2c)CBinary,noise-removedimageswerelabeledtoextracttheapple(Fig.2d)(a)(b)Fig.1:Edgedetectionbasedalgorithm.a)Originalimage,b)Edge-detectedimage(a)(b)(c)(d)Fig.2:Color-shapebasedalgorithm.a)Filteredimage,b)Binaryimage,c)Noise-reducedbinaryimage,d)LabeledimageAdv.J.FoodSci.Technol.,2(6):325-327,2010327RESULTSANDDISCUSSIONThemainideawastodevelopageneralalgorithmundervariousnaturallightingconditions.Thereby,nosupplementallightingsourcewasusedtocontroltheluminance.Sincetheimageswereacquiredunderuncontrollednaturaldaylightconditions,theyincludedtreecanopiesincludingtreebranches,leaves,fruits,sky,etc.Eachobjectoftheimagehasitsownedges,makingimagesetsofedgesofwhichtheappleisjustasubset.So,edgedetectionalgorithmwasnotsuccessful(Fig.1).Color-shapebasedalgorithmdetectedtheimageobjectsintheimagesbetter;however,itwasmorecomplicatedthantheedgedetection.Thestageofcolorprocessingblurredtheimageanditsoutputwasanimagewithlowcontrasthavingdistributedcolors(Fig.2a).Thus,theimagewasnoise-reducedinwhichthenumberofobjectswerelessthanthattheoriginalimage.Convertingtheimagetobinaryformandshape-basedanalysismadethenoiseaslowaspossible(Fig.2b,c).Color-shapebasedalgorithmwasabletodetecttheapplesin25of30images.Inotherwords,theaccuracyofthealgorithmwas83.33%.Figure2showstheprocedureofcolor-shapebasedalgorithm.CONCLUSIONInthisstudy,twoalgorithmsweredevelopedandcomparedtodetectoneappleineachimage.Nolightingcontrolwasexercisedtostandardizeluminanceoftheacquiredimages.However,edgedetectionbasedmethodwasnotsuccessful;color-shapebasedalgorithmwasabletodetectapplesin83.33%ofimages.REFERENCESBulanon,D.M.andT.Kataoka,2010.FruitdetectionsystemandanendeffectorforroboticharvestingofFujiapples.Agric.Eng.Int.CIGRJ.,12(1):203-210.Canny,J.,1986.Acomputationalapproachtoedgedetection.IEEET.PatternAnal.,8(6):679-698.FAO,2009.FoodandAgricultureOrganizationOfficialWe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年急救院感试题及答案
- 2025年海洋科技前沿-海水提锂吸附分离技术创新应用前景展望
- 护士专业考试试题及答案
- 2025年天津事业编考试题及答案
- 团委竞聘笔试题型及答案
- 2025年优生学胚胎植入技术评价试卷答案及解析
- 2025年急性中毒救治操作演练答案及解析
- 2025年医学信息学大数据分析能力考核练习卷答案及解析
- 2025年老年医学失能评估与护理综合测试答案及解析
- 教师指南考试试题及答案
- 2026版一本英语阅读真题80篇-3年级
- 婚礼婚纱款式指南
- 高三运动会课件
- 法语幼儿教学课件1
- 钩针课件教学课件
- 淮阳豆门乡消防安全培训课件
- 海上风电场安全培训课件
- 2025版CSCO非小细胞肺癌诊疗指南解读
- 红星照耀中国第九章课件
- GB/T 13090-2025饲料中六六六、滴滴涕的测定
- (2025)学法用法考试题及答案
评论
0/150
提交评论