




已阅读5页,还剩41页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
外文文献资料TheInternationalJournalofSoftComputingandSoftwareEngineeringJSCSE,Vol.3,No.3,SpecialIssue:TheProceedingofInternationalConferenceonSoftComputingandSoftwareEngineering2013SCSE13,SanFranciscoStateUniversity,CA,U.S.A.,March2013Doi:10.7321/jscse.v3.n3.15e-ISSN:2251-754583LicensePlateRecognition(LPR):AReviewwithExperimentsforMalaysiaCaseStudyNuzulhaKhilwaniIbrahim,EmalianaKasmuri,NoraziraAJalil,MohdAdiliNorasikin,SazilahSalamFacultyofInformationandCommunicationTechnology,UniversitiTeknikalMalaysiaMelaka(UTeM),HangTuahJaya,76100Melaka,Malaysianuzulha|emaliana|adili|.myMohamadRiduwanMdNawawiFacultyofElectricalEngineering,UniversitiTeknikalMalaysiaMelaka(UTeM),HangTuahJaya,76100Melaka,M.myAbstractMostvehiclelicenseplaterecognitionuseneuralnetworktechniquestoenhanceitscomputingcapability.Theimageofthevehiclelicenseplateiscapturedandprocessedtoproduceatextualoutputforfurtherprocessing.Thispaperreviewsimageprocessingandneuralnetworktechniquesappliedatdifferentstageswhicharepreprocessing,filtering,featureextraction,segmentationandrecognitioninsuchwaytoremovethenoiseoftheimage,toenhancetheimagequalityandtoexpeditethecomputingprocessbyconvertingthecharactersintheimageintorespectivetext.AnexemplarexperimenthasbeendoneinMATLABtoshowthebasicprocessoftheimageprocessingespeciallyforlicenseplateinMalaysiacasestudy.Analgorithmisadaptedintothesolutionforparkingmanagementsystem.Thesolutionthenisimplementedasproofofconcepttothealgorithm.Keyword-imageprocessing,preprocessing,filtering,featureextraction,segmentation,recognition,experimentI.INTRODUCTIONTheadvancedofcomputerapplicationprocessedmorethantextualdatasolvingeverydayproblems.Inputsfromopticaldeviceareusedindomainapplicationsuchasmedical,security,monitoringandcontrolandengineering.Abilityforcomputertoprocessimageandtranslateitintosomethingmeaningfulhasbecomemorepopular.Therefore,thetechnologyofimageprocessinghasadoptedinmanagingvehicleparkingsystem,vehicleaccesstorestrictedarea,trafficmonitoringsystemandhighwayelectronictollcollection.Forthispurpose,thecomputerneedstocapturethevehiclelicenceplatenumberandprocessitinthecomputer.Acameracapturestheimageofvehiclelicenseplate.Theimagethenfeedintothecomputerforfurtherprocessing.Theoutputoffromtheprocessisthevehiclelicenseplatenumberintextualform.Foraparkingsystem,theoutputisusedforcaridentification,parkingpaymentandauthorizationtoaccessintotheparkingspace.Thispaperreviewstheprocessingofvehiclelicenseplatethatusesimageprocessingandneuralnetworktechnique.Theframeworkforthisresearchisadaptedfrompreviousstudies1-4asshowninFigure1whichincludes5stages:pre-processing,(b)filtering,(c)featureextraction,(d)segmentationand(e)characterrecognition.Thefinaloutputofthesampleexperimentistorecognizethealphanumericcharactersonthelicenseplate.Thestructureofthispaperisorganizedbythestagesoftheprocess.II.PREPROCESSINGDigitalimagepreprocessingisaninitialsteptoimageprocessingimprovingthedataimagequalityformoresuitableforvisualperceptionorcomputationalprocessing.Preprocessingremoveunwanteddataandenhancetheimagebyremovingbackgroundnoise,normalizingtheintensityofindividualimageparticles,imagedeblurandremoveimagereflections.Preprocessingforcarlicenseplatenumberusesthreecommonsubprocesses,whicharegeometricoperation,grayscalingprocessandbinarizationprocess.Manyneuralnetworktechniqueshavebeenappliedtothesepreprocessingtechniquesmainlytoproducebetterimageandtoincreasethespeedofconvergenceofanimage.A.GeometricOperationGeometricoperationisaprocesstolocatethecarlicenseplate.Thepurposeofthisoperationistolocalizethecarplateforfastercharacteridentificationoverasmallregion.AnimprovedBackPropagationnetworkisusedtoovercometheweaknessofconvergencespeedin1.Geneticalgorithmandmomentumtermisintroducedtothecurrentnetworktoincreasethespeedofconvergencerate.ThecurrentBPnetworklearningprocessissaidtobeeasilyproduceerrorifinitialweightsisnotsetproperly1anditisdifficulttodeterminethenumberofhiddenlayerandhiddennodes.TheimprovednetworkusingBPmomentumincreasethespeedandtheaccuracytolocalizethecarlicenseplacelocation.Agrayscaleimageextractstheedgeofthelicenseplateusingsobeloperator1.MalviyaandBhirudin2usesiterativethresholdingoperationtoidentifylicenseplateofavehicle.Objectswithgeometriccharacteristicsarelabelledandselected.Theprocesstakesintoaccountaspectratio,totalpixelperobject,height,widthandthepresenceofcharactersintheregion.Forthis,weproposethefollowingalgorithm,wherethepseudo-codecanbesimplifiedasthefollowing:togetthescaleoftheimageforx-axisandy-axistoassignthenewvalueofhorizontalandverticalaxisbasedonthescaleofthex-axisandy-axistogetthegrayscalethresholdingvalueoftheimageTheinputoftheexperimentisshownasFigure2whiletheexampleoutputcanbeviewedasFigure3.Figure2.InputdataforLicensePlateImageProcessingFigure3.ImageoutputaftergeometricoperationprocessTheoutputfromtheextractionprocesswillbeusedinthenextstagewhichisgrayscalingprocess.B.GrayscalingProcessGrayscalingisaprocesstoproduceagrayscaleimagefromamulticolorimage.Inthisprocess,thethresholdofanimageiscalculated.Ifitislessthanthethreshold,theimagedataisrecalculatedtogetthecorrectgrayscalevalue.Thepurposeofthresholdingistoseparatetheobjectofinterestfromthebackground.Thresholdingisimportanttoprovidesufficientcontrastfortheimagesothatdifferentlevelofintensitybetweenobjectandthebackgroundcanbedifferentiatedforlatercomputationalprocessing.Differentintensitydeterminesthevalueofthethreshold.Grayscalingprocessimprovesthequalityoftheimageforlatercomputationalprocessing.Otherpreprocessingtechniquestoimprovethequalityoftheimageincludingimagedeblurring,imageenhancement,imagefusionandimagereconstruction.Imagefusionisaprocesstoenhancetheimagewithmultiplecombinationsofimages2-3.Thisprocessissuitabletoidentifythecarlicenseregistrationnumberfromamovingcar.Thetechniqueintegratesmultiresolutionimageandproduceacompositeimageusinginversemultiresolutiontransform3.Atemplateofimagefromagrayscaleisshiftedtoverticalandhorizontaldirection.Thecontrastfrequencyiscalculatedforeachpositioninthetemplateandcreatesanewimageusingthresholdingprocedure.Anycolorbelowthethresholdissettoback(zero)andabovethresholdissettowhite(one).Thevaluedeterminesthegraylevelresultingblackandwhiteimage.Atrainedfeedforwardneuralnetwork(FFN)withBlockRecursiveLSalgorithmisusedtoprocesscarlicenseplate4.Theapproachistoimprovetheconvergencerateandstabilizetherobustnessofthesolution.ThelocationofthecarlicenseplateisextractedusingDiscreteFourierTransform(DFT).DFTidentifiesmaximumvalueofhorizontalandverticaledges.Priortothattoneequalizationandcontrastreductionisusedtoimprovetheimage.Thesetechniquesarepreferredbecauseitismorerobustandsuitablecomparedtoedgeenhancement.Forthis,weproposethefollowingalgorithm,wherethepseudo-codecanbesimplifiedasthefollowing:toconvertintograyscaleimageThepseudo-codecanbetranslatedinMATLABsuchasfollowing:TestImg1=rgb2gray(TestImg1);C.BinarizationProcessBinarizationisaprocessofconvertinggrayscaleimageintoblackandwhiteimageor“0”and“1”.Previously,thegrayscaleimageconsistsofdifferentlevelofgrayvalues;from0to255.Toimprovethequalityandextractsomeinformationfromtheimage,theimageneedstobeprocessafewtimesandthusmakethebinaryimagemoreuseful.Graythresholdvalueofanimageisrequiredinthebinarizationprocessasitisimportanttodeterminewhetherthepixelsthathavinggrayvalueswillbeconvertedtoblackorwhite.Forthis,weproposethefollowingalgorithm,wherethepseudo-codecanbesimplifiedasthefollowing:toconvertintoblackandwhiteimageThepseudo-codecanbetranslatedinMATLABsuchasfollowing:ImgBW=im2bw(TestImg1,thresholdTheexampleoutputcanbeviewedasFigure4.Figure4.ImageoutputafterbinarizationprocessTheoutputfromtheextractionprocesswillbeusedinthenextstageoftheprocessinginthisframeworkwhichisfiltering.III.FILTERINGToenhancethequalityofprocessingimage,filteringisrequiredtosolvecontrastenhancement,noisesuppression,blurryissueanddatareduction.ItisreportedthatmostofpreprocessingactivitiesconductedinimagerestorationapplyNeuralNetworkapproach5.Rectanglesfilteringimplementedontherealplatenumberinvolvesconvolutionmatrix,binarizationfilterwithverticalandhorizontalprojectionabletoenhancetheimagequalityandeliminatesunwantedpiecesontheplate.Itisalsorecognizethenumberofrowsandsymbolsintheplatenumber6.In7,asimplefilterisdesignedbyimplementingintensityvarianceandedgedensitytoovercomeilluminationissue,distancechangedandcomplexbackground.Itisproposedthatthisapproachconvenientforreal-timeapplication.Thequalityandselectionofparametersonthecameraextremelycontributesthedesiredpreprocessingimagequality8.TheexampleoutputcanbeviewedasFigure5.Theoutputfromtheextractionprocesswillbeusedinthenextstagewhichisimagesegmentation.Figure5.ImageoutputafterfilteringprocessIV.FEATUREEXTRACTIONFeaturesextractionisthepartofmeasuringthoserelevantfeaturestobeusedinrecognitionprocess.Selectionoftherightfeaturesisimportantinordertoobtainbestresultsinlicenseplaterecognitionstudy.Colourfeaturesareverygoodpotentialforobjectdetection.Howevertheparametersuchascolourofcar,illuminationconditionandthequalityofimagingsystemhasbeenlimiteditspractice9.Accordingto10,colourfeatureshavebeenstudiedby11and12butfromthestudy,thisfeaturenotrobustenoughtovariousenvironments.However,therearemanytypesoffeaturesthatcanaidlicenseplaterecognitionsuchasaspectratio,texture,edgedensity,andsizeofregion10.Inordertoachievebetterdetectionrateinlicenseplaterecognition,researchersin10and13hadsuggestedacombinationoffeatures.Forinstance,apromisingresultforcombinationofcolourandedgehasbeenreportedin14.Moreover,9hasreportedthattheuseofsimplegeometricalfeaturessuchasshape,aspectratio,andsizeareenoughtofindgenuinelicenseplate.Howevertheresearchersfaceproblemsuchasclutterpartsintheimageandovercomeitwithedgedensity.Edgefeaturesofthecarimageareveryimportant,andedgedensitycanbeusedtosuccessfullydetectanumberplatelocationduetothecharacteristicsofthenumberplate9.Theedgedensityfeatureshadbeenusedin9,10,13becausethedensityofverticaledgesatthelicenseplateareaisconsiderablyhigherthanitsneighbourhood.Inaddition,thisfeatureismorereliableandabletoreduceprocessingtime.Littlecomputationaltimeisoneofimportantelementinrecognitionespeciallyinreal-timedetection.However,thereisalwaystrade-offbetweenthenumberoffeaturesusedinthesystemandthecomputationaltime9,13.Forthis,weproposethefollowingalgorithm,wherethepseudo-codecanbesimplifiedasthefollowing:Tocomparetheverticalandhorizontalhistogramingettingtherequiredfeatures.toextractthemeaningfulimagebasedonthefeaturesselectedThen,thehorizontalandverticalhistogramsarecombinedtogetthematchingregionofalicenseplateiskeptascandidateregionoralsoknownasmeaningfulimage.TheexampleoutputcanbeviewedasFigure6andFigureFigure6.ImageoutputafterfeatureselectionprocessFigure7.ImageoutputafterfeatureextractionprocessTheoutputfromtheextractionprocesswillbeusedinthenextstagewhichisimagesegmentation.V.IMAGESEGMENTATIONOneofthemostpopulartopicsinimageprocessingstudyisimagesegmentation.Thesegmentationprocessbecomesimportanttotheprocessingoftheimagetofindthemeaningfulinformationwhereitcomesfromthemeaningfulregionswhichrepresenthigherlevelofdata.Theanalysisofimagerequireslargeamountoflowlevelofdatawhichisinpixeltobeextractedintomeaningfulinformation.Higher-levelobjectpropertiescanbeincorporatedintosegmentationprocess,aftercompletingcertainpreliminarysegmentationprocess.Examplesofhigher-levelpropertiesareasfollow:i.shape,orii.colourfeaturesThen,itcomestothegoalofsegmentationwhichistofindregionsthatrepresentmeaningfulpartsofobjects.Insegmentation,theimagewillbedividedintoregionsbasedontheinterestofthestudy.Imagesegmentationmethodswilllookforobjectsthateitherhavesomemeasureofhomogeneity(withinthemselves),orcontrast(withtheobjectsontheirborder).Mostimagesegmentationalgorithmscanbedividedasthefollowing:i.modifications,ii.extensions,binationofthese2basicconceptsClassically,Umbaughin15divideimagesegmentationtechniquesintothree(3)whichare:i.Regiongrowingandshrinking:subsetofclusteringii.Clusteringmethodsiii.Boundarydetection:extensionsoftheedgedetectiontechniquesAtthesamepoint,HaralickandShapiro16categorizedimagesegmentationtechniquesintosix(6)whichare:i.Measurementspaceguidedspatialclusteringii.Singlelinkageregiongrowingschemesiii.Hybridlinkageregiongrowingschemesiv.Centroidlinkageregiongrowingschemesv.Spatialclusteringschemesvi.SplitandmergeschemesClusteringisoneofthesegmentationtechniqueasHaralickandShapiro16differentiatedclusteringandsegmentationsuchasfollow:i.Inclustering:thegroupingisdoneinmeasurementspaceii.Insegmentation:thegroupingisdoneinthespatialdomainoftheimageClusteringtechniquescanbeusedtoanydomain,eg:anyN-dimensionalcolororfeaturespace,includingspatialdomainscoordinates.Thistechniquesegmentstheimagebyplacingsimilarelementsintogroups,orclusters,basedonsomesimilaritymeasure.Clusteringisdifferfromregiongrowingandshrinkingmethods,wherethemathematicalspaceusedforclustering.Thedetailsofeachmethodsinsegmentationareexplainedinthenextsections.A.ThresholdingThresholdingisoneofthesimplestandmostpopularmethodinimagesegmentation.Twocommontypesofthresholdingareoutlinedasfollow:i.Localthresholdingisreferredwhenanimageispartitionedintosubregions,andeachsubregioncarrydifferentvalueofthreshold.Localthresholdmethodalsocalledasadaptivethresholdingschemes17-19.ii.Globalthresholdingisreferringtoassigningonlyonethresholdvaluetotheentireimage.Thresholdingtechniquesalsocanbecategorizedintotwolevels:i.Bilevelthresholding:theimageistwo(2)regionswhichareobject(black)andbackground(white).ii.Multithresholding:theimageiscomposedoffewobjectswithdifferentsurfacecharacteristicsthusneedmultiplevalueofthreshold.Thresholdingalsocanbeanalyzedasclassificationproblem,suchthatclassifiyingbilevelsegmentationofanimageintoobjectandbackground.Amongthemostcommonmethodsfoundforthresholdinginimagesegmentationarelistedasthefollowing:i.maximumentropymethod20-22ii.Otsusmethod(maximumvariance)23-26iii.k-meansclustering27-35B.EdgeDetectionTherewillbeedgeandlinedetectioninsegmentationtodivideregionsintomeaningfulinformation.Edgedetectiontechniques:Linedetection/linefinding=Houghtransform37.Houghtransformisdesignedspecificallytofindlines.Alineisacollectionofedgepoints(thatareadjacentandhavethesamedirection).TheHoughalgorithmwilltakeacollectionoffewedgepoints.Edgedetectiontechniques38-53havebeenusedasthebaseofanothersegmentationtechnique.Basically,edgedetectionisalsoanindependentprocessinimageprocessing.Edgedetection,orsometimesitiscalledasedgefindingisalsocloselyrelatedtoregiondetection.Weneedtofindtheregionboundariesfirstbeforewecanproceedtosegmentanobjectfromanimage.Thisisbecausetheedgesidentifiedbyedgedetectionarefrequentlydisconnected.Itmeansthatwehavetofindtheboundariesinordertogettheedges.Insegmentation,linedetectionisdonetodivideregionsintomeaningfulinformation.OneoflinedetectiontechniqueisHoughtransform.Houghtransformisdesignedspecificallytodetectlines.Alineisacollectionofedgepoints(thatareadjacentandhavethesamedirection).TheHoughalgorithmwilltakeacollectionoffewedgepoints.C.Region-basedimagesegmentationThistechniqueattempttoclassifyaparticularimageintoseveralregionsorclassesaccordingtothecommonpropertiesoftheimage.Therearefewpropertiesconsideredforthisprocesswhicharepatternandtexture,intensityvaluesandspectralprofilesoftheimage.Inthismethod,wewanttogrouptheregionssothateachofthepixelsintheregionwillhavesimilarvalueoftheproperties.Therearemanyrealapplicationsusedthismethodsuchasremotesensing,2Dand3Dimages54-55whiletherearevariousmodelsandalgorithmsusedforthistechniquesuchasMarkovRandomFieldModel56-60andMumford-ShahAlgorithm61-64.D.Compression-basedmethodsInthismethod,segmentationwillbedoneinawaytheimagewillbecompressedbasedonthesimilarityofthepatternsoftexturesorboundaryshapeoftheimage.Thismethodaimstominimizethelengthofthedatawheretheoptimalsegmentationcanbeachieved.TherearefewwaysonhowtocalculatethecodinglengthofthedatasuchasHuffmancodingorMDL(MinimumDescriptionLength)principle65-66,wheretheycanbefoundinpreviousstudies67-70.E.Histogram-basedmethodsHistogram-basedmethod71-76isoneofthefrequentlyusedforimagesegmentationtechniques.Inthismethod,wewillproduceaverticalandahorizontalhistogramaccordingly.Thisprocessistogetagroupofpixelsinverticalandhorizontalregionswheretheywillleadtodistinguishingthegraylevelsoftheimage.Incommon,animagewillhavetworegions:backgroundandobject.Normally,thebackgroundisassignedasonegraylevelwhilestheobject(oralsocalledassubject)isanothergraylevel.Usually,backgroundwillsecurethelargestpartoftheimagesothegraylevelofitwillhavelargerpeakinthehistogramcomparedtotheobjectoftheimage.F.Region-growingmethodsRegionGrowingandShrinking77-99techniqueuserowandcolumn(r,c)basedimagedomain.Itcanbeconsideredassubsetofclusteringmethods,butlimitedtospatialdomain.Themethodscanbe:Local:operatingonsmallneighbourhoods,orGlobal:operatingontheentireimage,orCombinationofbothG.Split-and-mergemethodsThereisanalternativeforsegmentationmethodcalledsplitandmerge100-108.Splitandmergeisalsocalledasquadtreesegmentationwhereitbasedonquadtreepartition.Thedatastructureusedinsplitandmergeiscalledquadtreewhereatreewhichhasnodesandeachnodecanhavefourchildren.Itdividesregionsthatdonotpassahomogeneitytest,andcombinesregionsthatpassthehomogeneitytest.Forthis,weproposethefollowingalgorithm,wherethepseudo-codecanbesimplifiedasthefollowing:togetwidthofy-axisoftheimagetodivideintosubregiontogetwidthofy-axisoftheimagetodivideintosubregiontodivideintosubregiontoremoveblankspacetogetsamesizeafterregionhasbeendividedTheexampleoutputcanbeviewedasFigure8Figure8.ImageoutputaftersegmentationprocessTowrapup,agoodsegmentationprocessshouldturnoutuniformandhomogeneousregionswithrespecttosomecharacteristicssuchasgraytoneortextureaswellassimpleregionswithoutmanysmallholes.Theoutputfromthesegmentationwillbeusedinthenextstagewhichischaracterrecognition.CHARACTERRECOGNITIONCharacterrecognitionisthemostimportanttaskinrecognizingtheplatenumber109.Therecognitionofcharactershasbeenaproblemthathasrecei
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年河北省定州市辅警招聘考试试题题库及答案详解(夺冠)
- 2024年湖南安全技术职业学院单招职业技能测试题库含答案
- 历史●福建卷丨2022年福建省普通高中学业水平选择性考试历史试卷及答案
- 2025届高考物理大一轮复习课件 第十五章 第82课时 热力学定律与能量守恒定律
- DeepSeek人工智能大模型赋能数字医疗健康解决方案
- 数字粮仓智慧粮库与DeepSeek大模型融合方案
- 高三年级学期工作总结
- 消化内科护理试题及答案
- 西式厨师试题及答案
- 河北省秦皇岛市十中2024-2025学年下学期5月月考七年级数学试题(含部分答案)
- 安全法生产试题及答案
- 2025年04月广东惠州市惠阳区教育局选调下属事业单位工作人员15人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 短期护工合同协议书
- 安徽航瑞国际滚装运输有限公司招聘笔试题库2025
- 2025年英语四级考试模拟试卷及答案
- 夫妻实行aa制协议书
- 护理伦理实践路径分析
- 养老消防安全试题及答案
- 2025年下半年北京大兴区地震局招聘临时辅助用工拟聘用人员易考易错模拟试题(共500题)试卷后附参考答案
- 2025春季学期国家安全教育期末考试-国开(XJ)-参考资料
- 2024-2025学年人教版四年级数学下学期期末试卷(含答案)
评论
0/150
提交评论