计量经济小论文.doc_第1页
计量经济小论文.doc_第2页
计量经济小论文.doc_第3页
计量经济小论文.doc_第4页
计量经济小论文.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

成绩:20112012学年第一学期计量经济学综合作业1学院:理学院专业:统计学班级:09级1班姓名:雷文玉学号:091414753单方程作业:年份总指数建材类农副产品类纺织原料类yearyx1x2x3lnylnx1lnx2lnx31989126.4122.7128.9128.54.8394514.8097424.8590374.8559291990105.6115.2107.8107.44.6596584.746674.6802784.676561991109.1101.2106.8108.94.6922654.6170994.6709584.690431992111118.8103.4100.54.709534.7774414.6386054.6101581993135.1140.9112.2107.14.9060154.948054.7202834.6737631994118.2114.3148.3139.64.7723784.7388274.9992374.9387811995115.3102.6143.1123.64.7475374.6308384.9635444.8170511996103.9102.5114.794.54.6434294.6298634.742324.54861997101.399.710294.74.6180864.6021664.6249734.550714199895.898.694.594.34.5622634.5910714.54864.546481199996.798.889.896.84.5716134.5930984.4975854.5726472000105.1101.599.9102.44.6549124.6200594.604174.628887200199.898.6101.299.74.6031684.5910714.6170994.602166200297.798.295.797.14.5819024.5870064.5612184.5757412003104.899.7106.7101.44.6520544.6021664.6700214.6190732004111.4105.1114.2104.74.7131274.6549124.7379514.6510992005108.3103.1101.7102.44.6849054.6356994.6220274.6288872006106101.9104.3102.94.6634394.6239924.6472714.6337582007104.4103106.1101.44.648234.6347294.6643824.6190732008110.5109.5107.5103.14.7050164.6959254.6774914.635699200992.1101.19798.84.5228754.616114.5747114.593098表一915建材材料,农副产品和纺织类价格指数数据来源中中国统计年鉴20101对数据做回归处理: 1)原始数据的描述性统计量X1X2X3YMean106.5238108.8476105.2286107.5476Median102.5000106.1000102.4000105.6000Maximum140.9000148.3000139.6000135.1000Minimum98.2000089.8000094.3000092.10000Std. Dev.10.6030114.8222711.6500310.14853Skewness1.9100441.4804931.7469221.031591Kurtosis6.3186684.5710395.2898884.079687Jarque-Bera22.405809.83115415.269224.744637Probability0.0000140.0073310.0004830.093264Sum2237.0002285.8002209.8002258.500Sum Sq. Dev.2248.4784393.9922714.4632059.852Observations21212121表二由上至下分别是均值,中位数,最大值,最小值,标准差,偏度,峰度,正态性检验,P值等。同时由EVIEWS软件输出的回归结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/03/11 Time: 18:44Sample: 1989 2009Included observations: 21CoefficientStd. Errort-StatisticProb.C6.01998710.727650.5611650.5820X10.6741730.0976906.9011320.0000X20.2495650.1434401.7398540.1000X30.0242100.1875220.1291050.8988R-squared0.855602Mean dependent var107.5476Adjusted R-squared0.830121S.D. dependent var10.14853S.E. of regression4.182861Akaike info criterion5.869511Sum squared resid297.4376Schwarz criterion6.068468Log likelihood-57.62987Hannan-Quinn criter.5.912690F-statistic33.57685Durbin-Watson stat2.375577Prob(F-statistic)0.000000 表三(1)建立方程: Y = 6.01998690022 + 0.674172705671*X1 + 0.249565404554*X2 + 0.0242100329345*X3 2)为了消除异方差影响,对数据取对数,如第一个表。Dependent Variable: LNYMethod: Least SquaresDate: 12/06/11 Time: 16:42Sample: 1989 2009Included observations: 21CoefficientStd. Errort-StatisticProb.C0.1812390.4973110.3644380.7200LNX10.6483780.1074826.0324120.0000LNX20.2760520.1471681.8757570.0780LNX30.0378580.1862440.2032690.8413R-squared0.842677Mean dependent var4.673898Adjusted R-squared0.814915S.D. dependent var0.091020S.E. of regression0.039158Akaike info criterion-3.472766Sum squared resid0.026067Schwarz criterion-3.273809Log likelihood40.46404Hannan-Quinn criter.-3.429587F-statistic30.35273Durbin-Watson stat2.257620Prob(F-statistic)0.000000表四1.建立方程:LNY = C(1) + C(2)*LNX1 + C(3)*LNX2 + C(4)*LNX3LNY = 0.181238993815 + 0.648378343687*LNX1 + 0.27605201835*LNX2 + 0.0378576549048*LNX3 拟合优度检验:由上数据可知拟合程度较高.。对变量进行T检验:在10%的置信水平下1.740,显然lnx1,lnx2通过了T检验对方程进行F检验:3.20所以通过了F检验2.异方差性检验:(1)怀特检验:Heteroskedasticity Test: WhiteF-statistic0.266757Prob. F(9,11)0.9715Obs*R-squared3.762235Prob. Chi-Square(9)0.9264Scaled explained SS2.727734Prob. Chi-Square(9)0.9741Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 12/08/11 Time: 11:28Sample: 1989 2009Included observations: 21CoefficientStd. Errort-StatisticProb.C-2.2392342.259356-0.9910940.3429LNX10.7367410.7537260.9774650.3493LNX120.0094750.0905870.1045960.9186LNX1*LNX2-0.1443410.404810-0.3565650.7282LNX1*LNX3-0.0314430.343677-0.0914900.9287LNX21.0392381.9896180.5223310.6118LNX220.0229500.1092830.2100010.8375LNX2*LNX3-0.1301510.247499-0.5258640.6094LNX3-0.8249712.063398-0.3998120.6969LNX320.1726440.2295740.7520200.4678R-squared0.179154Mean dependent var0.001241Adjusted R-squared-0.492447S.D. dependent var0.001892S.E. of regression0.002311Akaike info criterion-8.996128Sum squared resid5.88E-05Schwarz criterion-8.498737Log likelihood104.4593Hannan-Quinn criter.-8.888181F-statistic0.266757Durbin-Watson stat1.522903Prob(F-statistic)0.971467表五怀特统计量=21*0.179154=3.762234,该值小于在1%显著性水平下,自由度为9的分布的相应临界值=21.66599,因此在1%的置信水平下接受同方差的假设。(2)G-Q检验:将原始数据按X2排成升序,去掉中间5个数据,得两个容量为8的子样本。对两个子样本分别作最小二乘回归,求各自的残差平方和RSS1和RSS2。子样本1回归结果如下:Dependent Variable: LNYMethod: Least SquaresDate: 12/08/11 Time: 21:14Sample: 1989 1996Included observations: 8CoefficientStd. Errort-StatisticProb.C0.2297861.2055530.1906060.8581LNX10.6551950.1971013.3241660.0293LNX20.2056550.3011740.6828440.5322LNX30.0907070.3142720.2886270.7872R-squared0.795096Mean dependent var4.746283Adjusted R-squared0.641418S.D. dependent var0.090419S.E. of regression0.054144Akaike info criterion-2.687477Sum squared resid0.011726Schwarz criterion-2.647756Log likelihood14.74991Hannan-Quinn criter.-2.955377F-statistic5.173781Durbin-Watson stat3.574743Prob(F-statistic)0.073121表六子样本一:LNY = 0.2297859988 + 0.655195068173*LNX1 + 0.205654847593*LNX2 + 0.0907073254034*LNX30.795096 0.641418RSS1=0.011726子样本2回归结果如下:Dependent Variable: SER01Method: Least SquaresDate: 12/08/11 Time: 21:38Sample: 2002 2009Included observations: 8CoefficientStd. Errort-StatisticProb.C-5.0630584.026459-1.2574470.2770SER020.1308860.6276030.2085490.8450SER030.2180240.5712460.3816640.7221SER041.7514121.5173171.1542820.3127R-squared0.792146Mean dependent var4.646443Adjusted R-squared0.636255S.D. dependent var0.064493S.E. of regression0.038896Akaike info criterion-3.348983Sum squared resid0.006052Schwarz criterion-3.309262Log likelihood17.39593Hannan-Quinn criter.-3.616884F-statistic5.081426Durbin-Watson stat1.617656Prob(F-statistic)0.075155表七子样本二:SER01 = -5.06305769616 + 0.130885629473*SER02 + 0.218023842813*SER03 + 1.75141205662*SER040.792146 0.636255RSS2=0.006052计算F的统计量:0.516118在5%的显著性水平下,6.388233,由此可见接受原假设,即不存在异方差性。3.序列相关性检验:(1)回归检验法:Dependent Variable: EMethod: Least SquaresDate: 12/08/11 Time: 22:15Sample (adjusted): 1990 2009Included observations: 20 after adjustmentsCoefficientStd. Errort-StatisticProb.E1-0.4062180.266395-1.5248730.1447C0.0010640.0080600.1320510.8964R-squared0.114402Mean dependent var-0.000725Adjusted R-squared0.065202S.D. dependent var0.036883S.E. of regression0.035660Akaike info criterion-3.734923Sum squared resid0.022890Schwarz criterion-3.635350Log likelihood39.34923Hannan-Quinn criter.-3.715485F-statistic2.325239Durbin-Watson stat1.236495Prob(F-statistic)0.144669表八由以上回归结果得到方程:,由D.W=1.236495,dl=1.13,du=1.54,所以正好落入盲区,不能确定。(2)D.W检验法:D.W.= 2.257620在2的附近,dl=1.13,du=1.54,4-du=2.46, 所以不存在自相关性。(3)LM检验法:Breusch-Godfrey Serial Correlation LM Test:F-statistic2.129001Prob. F(1,16)0.1639Obs*R-squared2.466160Prob. Chi-Square(1)0.1163Test Equation:Dependent Variable: RESIDMethod: Least SquaresDate: 12/08/11 Time: 22:17Sample: 1989 2009Included observations: 21Presample missing value lagged residuals set to zero.CoefficientStd. Errort-StatisticProb.C-0.0080880.481608-0.0167930.9868LNX10.0178130.1047950.1699830.8672LNX20.0020320.1425190.0142560.9888LNX3-0.0177940.180764-0.0984410.9228RESID(-1)-0.4168970.285720-1.4591100.1639R-squared0.117436Mean dependent var-6.75E-16Adjusted R-squared-0.103205S.D. dependent var0.036102S.E. of regression0.037919Akaike info criterion-3.502452Sum squared resid0.023006Schwarz criterion-3.253756Log likelihood41.77574Hannan-Quinn criter.-3.448478F-statistic0.532250Durbin-Watson stat1.465473Prob(F-statistic)0.713931表九接受原假设,所以不存在一阶序列相关性。4.多重共线性的检验:对于多个解释变量的模型,采用综合统计检验法。【在普通最小二乘法下,模型的,F值为30.35273均较大,但各参数估计值的t检验值较小,说明各解释变量对Y的联合线性作用显著,但各解释变量间存在共线性而使得他们对Y的独立作用不能分辨,固t检验不显著。】(1) 判定系数检验法由于在OLS下,较大为0.842677,而且F=30.35273=3.20,故认为材料总指数与上述解释变量间总体关系线性关系显著,符号的经济意义也合理,但X3没通过t检验,故认为解释变量间存在多重共线性。检验简单相关系数:X1,X2,X3的相关系数如下:LNX1LNX2LNX3LNX110.41801339480188510.4655594460191656LNX20.418013394801885110.8817193507144089LNX30.46555944601916560.88171935071440891表十由表中数据发现X2与X3间存在高度相关性讨论:第一步,在初始模型中引入X2,模型拟合优度有所提高,且参数符号合理,变量也通过了t检验,(2)D.W检验也表明不存在一阶序列相关性。原始模型利用逐步回归继续检验逐步回归:Dependent Variable: LNYMethod: Least SquaresDate: 12/06/11 Time: 17:39Sample: 1989 2009Included observations: 21CoefficientStd. Errort-StatisticProb.C0.8210520.5813521.4123150.1740LNX10.8260610.1246206.6286220.0000R-squared0.698119Mean dependent var4.673898Adjusted R-squared0.682230S.D. dependent var0.091020S.E. of regression0.051309Akaike info criterion-3.011506Sum squared resid0.050020Schwarz criterion-2.912028Log likelihood33.62082Hannan-Quinn criter.-2.989917F-statistic43.93862Durbin-Watson stat1.871486Prob(F-statistic)0.000002表十一他的拟合优度为0.698119,可见材料总指数受建材类的影响最大,与经验向符合,因此选它作为初始的回归模型。下面引入lnx2Dependent Variable: LNYMethod: Least SquaresDate: 12/06/11 Time: 17:41Sample: 1989 2009Included observations: 21CoefficientStd. Errort-StatisticProb.C0.2145500.4568590.4696200.6443LNX10.6533230.1018686.4134320.0000LNX20.3016180.0743534.0565840.0007R-squared0.842295Mean dependent var4.673898Adjuste

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论