




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
互联网产品数据分析基础体系互联网产品的数据指标体系主要分为五个维度,包括用户规模与质量、参与度分析、渠道分析、功能分析以用户属性分析。用户规模和质量维度主要是分析用户规模指标,这类指标一般为产品考核的重点指标;参与度分析主要分析用户的活跃度;渠道分析主要分析渠道推广效果;功能分析主要分析功能活跃情况、页面访问路径以及转化率;用户属性分析主要分析用户特征。一、用户规模和质量用户规模和质量的分析包括活跃用户、新增用户、用户构成、用户留存率、每个用户总活跃天数五个常见指标。用户规模和质量是数据分析最重要的维度,其指标也是相对其他维度最多。、活跃用户指标活跃用户指在某统计周期内使用过产品的用户。手机端产品活跃用户数一般按照设备维度统计,即统计一段周期内使用过的设备(如手机、平板电脑)数量。活跃用户是衡量产品用户规模的指标。通常,一个产品是否成功,如果只看一个指标,那么这个指标一定是活跃用户数。活跃用户数根据不同统计周期可以分为日活跃数(DAU)、周活跃数(WAU)、月活跃数(MAU)。、新增用户指标新增用户是指注册后,首次登录产品的用户。按照统计时间跨度不同分为日、周、月新增用户。新增用户量指标主要是衡量营销推广渠道效果的最基础指标;另一方面,新增用户占活跃用户的比例也可以用来用于衡量产品健康度。如果某产品新用户占比过高,那说明该产品的活跃是靠推广得来,这种情况非常值得关注,尤其是关注用户的留存率情况。、用户构成指标用户构成是对周活跃用户或者月活跃用户的构成进行分析,有助于通过新老用户结构了解活跃用户健康度。以周活跃用户为例,周活跃用户包括以下几类用户,包括本周回流用户、连续活跃n周用户、忠诚用户、连续活跃用户。本周回流用户是指上周“未使用”过产品,本周使用产品的用户;连续活跃n周用户是指连续n周,每周至少使用过一次产品的活跃用户;忠诚用户是指连续活跃5周及以上的用户;连续活跃用户是指连续活跃2周及以上的用户;近期流失用户是指连续n周(大约等于1周,但小于等于4周)没有使用过产品的用户。、用户留存率指标用户留存率是指在某一统计时段内的新增用户数中再经过一段时间后仍使用该产品的用户比例。用户留存率可重点关注次日、7日、14日以及30日留存率。次日留存率即某一统计时段(如今天)新增用户在第二天(如明天)再次使用产品的比例;7 日留存率即某一统计时段(如今天)新增用户数在第 7 天再次使用该产品的比例;14日和30日留存率以此类推。用户留存率是验证产品用户对吸引力很重要的指标。通常,我们可以利用用户留存率对比同一类别产品中不同产品对用户的吸引力。如果对于某一个产品,在相对成熟的版本情况下,如果用户留存率有明显变化,则说明用户质量有明显变化,很可能是因为推广渠道质量的变化所引起的。、每个用户总活跃天数指标每个用户的总活跃天数指标(TAD,Total Active Days per User)是在统计周期内,平均每个用户在产品的活跃天数。如果统计周期比较长,如统计周期一年以上,那么,每个用户的总活跃天数基本可以反映用户在流失之前在产品上耗费的天数,这是反映用户质量尤其是用户活跃度很重要的指标。二、参与度分析参与度分析的常见分析包括使用次数分析、使用时长分析、访问页面分析和使用时间间隔分析。参与度分析主要是分析用户的活跃度。、使用次数指标使用次数是指在某一统计周期内用户使用产品的次数。在进行数据分析时,一方面要关注使用次数的总量走势,另一方面,则需要关注人均使用次数,即同一统计周期的使用次数与活跃用户数的比值;如人均日使用次数,则为日使用次数与日活跃用户数的比值,反映的是每天每用户平均使用次数。通常,人均使用次数和人均使用时长可以结合一起分析。、使用时长使用总时长是指在某一统计周期内所有从产品开始使用到结束使用的总计时长。使用时长还可以从人均使用时长、单次使用时长等角度进行分析。人均使用时长是同一统计周期内的使用总时长和活跃用户数的比值;单次使用时长是同一统计周期内使用总时长和使用次数的比值。使用时长相关的指标也是衡量产品活跃度、产品质量的重要指标,道理很简单,用户每天的时间是有限的且宝贵的,如果用户愿意在你的产品投入更多的时间,证明你的产品对用户很重要。使用次数和使用时长可以结合一起分析,如果用户使用次数高,使用时长高,该产品则为用户质量非常高,用户粘性好的应用,比如现在很流行的社交应用。、访问页面访问页面数指用户一次使用访问的页面数。我们通常要分析访问页面数分布,即统计一定周期内(如1天、7天或30天)产品的访问页面数的活跃用户数分布,如访问1-2页的活跃用户数、3-5页的活跃用户数、6-9页的活跃用户数、10-29页的活跃用户数、30-50页的活跃用户数,以及50页以上的活跃用户数。同时,我们可以通过不同统计周期(但统计跨度相同,如都为7天)的访问页面分布的差异,以便于发现用户体验的问题。、使用时间间隔使用时间间隔是指同一用户相邻两次使用的时间间隔。我们通常要分析使用时间间隔分布,一般统计一个月内使用的用户使用时间间隔的活跃用户数分布,如使用时间间隔在1天内、1天、2天7天、8-14天、15-30天的活跃用户数分布。同时,我们可以通过不同统计周期(但统计跨度相同,如都为30天)的使用时间间隔分布的差异,以便于发现用户体验的问题。三、渠道分析渠道分析主要是分析各渠道在相关的渠道内的质量的变化和趋势,用以科学评估渠道质量,优化渠道推广策略。渠道分析需要渠道推广负责人重点关注,尤其是目前移动应用市场渠道作弊较为盛行的情况下,渠道推广的分析尤其是要重点关注渠道作弊的分析。渠道分析包括新增用户、活跃用户、使用次数、单次使用时长和留存率等指标。这些指标均在上文阐述过,在此就不在赘述。以上提到的只是渠道质量评估的初步维度,如果还需要进一步研究渠道,尤其是研究到渠道防作弊层面,指标还需要更多,包括:判断用户使用行为是否正常的指标,如关键操作活跃量占总活跃的占比,用户激活APP的时间是否正常;判断用户设备是否真实,如机型、操作系统等集中度的分析。总之,如果要深入研究渠道作弊,算法的核心思想是研究推广渠道所带来的用户是否是真的“人”在用,从这个方向去设计相关的评估指标和算法,如某渠道带来的用户大部分集中在凌晨2点使用,我们就认为这种渠道所带来的用户很可能不是正常人在使用,甚至是机器在作弊。四、功能分析功能分析主要分析功能活跃情况、页面访问路径以及转化率。、功能活跃指标功能活跃指标主要关注某功能的活跃人数、某功能新增用户数、某功能用户构成、某功能用户留存。这些指标的定义与本文第一部分的“用户规模与质量”的指标类似。只是,本部分只关注某一功能模块,而不是产品整体。、页面访问路径分析产品页面访问路径统计用户从打开应用到离开应用整个过程钟每一步的页面访问和跳转情况。页面访问路径分析的目的是在达到产品商业目标之下帮助产品用户在使用产品的不同阶段完成任务,并且提高任务完成的效率。产品页面访问路径分析需要考虑以下三方面问题:(a)产品用户身份的多样性,用户可能是你的会员或者潜在会员,有可能是你的同事或者竞争对手等;(b)产品用户目的多样性,不同用户使用产品的目的有所不同;(c)产品用户访问路径的多样性,即时是身份类似、使用目的类似,但访问路径也很可能不同。因此,我们在做产品页面访问路径分析的时候,需要对产品用户做细分,然后再进行产品页面访问路径分析。最常用的细分方法是按照产品的使用目的来进行用户分类,如汽车产品的用户便可以细分为关注型、意向型、购买型用户,并对每类用户进行基于不同访问任务的进行路径分析,比如意向型的用户,他们进行不同车型的比较都有哪些路径,存在什么问题。还有一种方法是利用算法,基于用户所有访问路径进行聚类分析,基于访问路径的相似性对用户进行分类,再对每类用户进行分析。、漏斗模型漏斗模型是用于分析产品中关键路径的转化率,以确定产品流程的设计是否合理,分析用户体验问题。转化率是指进入下一页面的人数(或页面浏览量)与当前页面的人数(或页面浏览量)的比值。用户从刚进入到完成产品使用的某关键任务时(如购物),不同步骤之间的转换会发生损耗。如用户进入某电商网站,到浏览商品,到把商品放入购物车,最后到支付,每一个环节都有很多的用户流失损耗。通过分析转化率,我们可以比较快定位用户使用产品的不同路径中,那一路径是否存在问题。当然,对于产品经理,其实不用每天都看转化率报表,我们可以对每天的转化率进行连续性的监控,一旦转化率出现较大的波动,应及时发现产品问题。五、用户属性分析用户属性分析主要从用户使用的设备终端、网络及运营商分析和用户画像角度进行分析。、设备终端分析设备终端的分析维度包括机型分析、分辨率分析、浏览器分析和操作系统系统分析等,在分析的时候,主要针对这些对象进行活跃用户、新增用户数、使用次数的分析。即分析不同机型的活跃用户数、新增用户数和使用次数,分析不同分辨率设备的活跃用户数、新增用户数和使用次数,分析不同操作系统设备的活跃用户数、新增用户数和使用次数。、网络及运营商分析网络及运营商主要分析用户联网方式和使用的电信运营商,主要针对这些对象进行活跃用户、新增用户数、使用次数的分析。即分析联网方式(包括wifi、2G、3G、4G)的活跃用户数、新增用户数和使用次数,分析不同运营商(中国移动、中国电信、中国联通等)的活跃用户数、新增用户数和使用次数。、地域分析主要分析不同区域,包括不同省市和国家的活跃用户数、新增用户数和使用次数。、用户画像分析用户画像分析包括人口统计学特征分析、用户个人兴趣分析、用户商业兴趣分析。人口统计学特征包括性别、年龄、学历、收入、支出、职业、行业等;用户个人兴趣指个人生活兴趣爱好的分析,如听音乐、看电影、健身、养宠物等;用户商业兴趣指房产、汽车、金融等消费领域的兴趣分析。用户画像这部分的数据需要进行相相关的画像数据采集,才可以支撑比较详细的画像分析。本文主要介绍了互联网产品基础的数据分析体系,还有更多的指标体系需要根据产品的特性进行特殊设计。比如,搜索产品
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025瓷砖外贸出口代理及售后服务合同范本
- 2025版园林植物种植与养护合作协议
- 2025版农业设施土建工程施工合同规范
- 2025年广告宣传策划执行合同书范本
- 2025版智能家居全屋定制项目-签约与节能环保承诺合同
- 2025版室内外景观装修合同纠纷处理办法
- 2025版商业街区物业服务与安全保障合同
- 2025年劳动合同制员工加班费支付标准合同
- 2025年度高端铜合金材料进口贸易合同范本
- 2025版人工智能助手开发与落地应用合同
- GB/T 35156-2017结构用纤维增强复合材料拉索
- GB/T 30790.6-2014色漆和清漆防护涂料体系对钢结构的防腐蚀保护第6部分:实验室性能测试方法
- 信息互联互通标准化成熟度测评-医科总医院
- FABE销售法则销售培训课件
- 电力电子技术第五版(王兆安)课件全
- 人工智能导论课件
- 有效沟通:金字塔原则课件
- 苏科版三年级上册劳动第二课《学定时》课件(定稿)
- 中国古代的美育思想课件
- 心理学专业英语基础51057048
- 日周月安全检查记录表
评论
0/150
提交评论