运筹学复习资料_第1页
运筹学复习资料_第2页
运筹学复习资料_第3页
运筹学复习资料_第4页
运筹学复习资料_第5页
已阅读5页,还剩95页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,蒋绍忠 制作,浙江大学 管理学院2005年6月,运筹学复习资料,线性规划的基本概念单纯形法和对偶单纯形法对偶线性规划运输问题网络最小费用流问题网络最大流问题网络最短路径问题动态规划最短路径问题动态规划资源分配问题动态规划背包问题,学而时习之不亦乐乎,线性规划的基本概念,min z=x1+2x2s.t. x1+x24(1) -x1+x21(2) x2 3(3) x1, x2 0,引进松弛变量x3, x4, x5min z=x1+2x2s.t. x1+x2+x3 =4 -x1+x2 -x4=1 x2 +x5=3 x1, x2 x3, x4, x50,基础解,O,A,B,C,D,E,F,G,H,B,C,E,F,B C E F,基础可行解,可行域,目标函数等值线.,最优解,C,A不是可行解,是由于变量( ) 0。G不是可行解,是由于变量( )18 !总产量约束end,LP OPTIMUM FOUND AT STEP 4 OBJECTIVE FUNCTION VALUE 1) 77.00000 VARIABLE VALUE REDUCED COST X1 1.000000 0.000000 X2 17.000000 0.000000 X3 0.000000 10.500000 ROW SLACK OR SURPLUS DUAL PRICES 2) 0.000000 2.500000 3) 7.000000 0.000000 4) 100.000000 0.000000 5) 0.000000 -1.000000 NO. ITERATIONS= 4,RANGES IN WHICH THE BASIS IS UNCHANGED: OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE X1 9.000000 INFINITY 1.000000 X2 4.000000 0.500000 INFINITY X3 1.000000 10.500000 INFINITY RIGHTHAND SIDE RANGES ROW CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE 2 38.000000 14.000000 2.000000 3 26.000000 INFINITY 7.000000 4 100.000000 100.000000 INFINITY 5 18.000000 1.000000 8.500000,原料是紧缺约束,增加原料供应可以增加利润,边际利润为2.5万元/吨总产量不小于18吨限制了利润增加,减少总产量的限制对增加利润有利产品C不生产,是由于利润太小,利润至少要增加到11.5万元/吨,才有可能安排生产,给出运输问题的初始基础可行解,最小元素法,西北角法,求出各非基变量的检验数,对偶变量法,闭回路法,确定离基变量,确定进基变量,调整运量,运输问题,用最小元素法得到一个初始基础可行解,125,85,180,30,35,75,-7,求非基变量x11的检验数,125,85,180,30,35,75,-7,-8,求非基变量x14的检验数,125,85,180,30,35,75,-7,-8,-4,求非基变量x22的检验数,125,85,180,30,35,75,-7,-8,-6,-7,求非基变量x31的检验数,125,85,180,30,35,75,-7,-8,-4,-7,+1,求非基变量x32的检验数,125,85,180,30,35,75,-7,-8,-4,-7,+1,+4,求非基变量x33的检验数,125,85,180,30,35,75,-7,-8,-6,-7,+1,+4,x33=75进基,x23=0离基,x24=30+75=105,x34=180-75=105,确定进基变量和离基变量,125,85,105,35,-3,求非基变量x11的检验数,125,85,105,35,-3,-4,求非基变量x14的检验数,125,85,105,35,-3,-4,-8,求非基变量x22的检验数,125,85,105,35,-6,-4,-4,-8,求非基变量x23的检验数,125,85,105,35,-5,-4,-4,-7,-8,求非基变量x31的检验数,125,85,105,35,-5,-4,-4,-7,-3,-8,得到最优解:x12=85, x13=35, x21=125, x24=105, x33=75, x34=105 min z = 3660,求非基变量x32的检验数,1,2,5,4,3,6,7,b1=9,b2=-3,b3=-5,b4=8,b5=4,b6=-7,b7=-6,c12=4,c14=6,c46=5,c13=2,c34=3,c45=1,c35=7,c67=9,c57=8,网络最小费用流问题,给出最小费用流问题的初始基础可行解,求出各非基变量的检验数,对偶变量法,闭回路法,确定离基变量,确定进基变量,调整流量,1,2,5,4,3,6,7,b1=9,b2=-3,b3=-5,b4=8,b5=4,b6=-7,b7=-6,c12=4,c14=6,c46=5,c13=2,c34=3,c45=1,c35=7,c67=9,c57=8,找到一个初始的基础可行解生成树,x12=3,x13=6,x35=1,x57=5,x46=8,x67=1,1,2,5,4,3,6,7,b1=9,b2=-3,b3=-5,b4=8,b5=4,b6=-7,b7=-6,c12=4,c14=6,c46=5,c13=2,c35=7,c67=9,c57=8,计算各非基变量的检验数,x12=3,x13=6,x35=1,x57=5,x46=8,x67=1,1,2,5,4,3,6,7,b1=9,b2=-3,b3=-5,b4=8,b5=4,b6=-7,b7=-6,c12=4,c46=5,c13=2,c34=3,c35=7,c67=9,c57=8,计算各非基变量的检验数,x12=3,x13=6,x35=1,x57=5,x46=8,x67=1,z24-c24=(-c46-c67+c54+c35+c13-c12)-c24=-5-9+8+7+2-4-6=-7,1,2,5,4,3,6,7,b1=9,b2=-3,b3=-5,b4=8,b5=4,b6=-7,b7=-6,c12=4,c46=5,c13=2,c45=1,c35=7,c67=9,c57=8,计算各非基变量的检验数,确定进基变量,x12=3,x13=6,x35=1,x57=5,x46=8,x67=1,z24-c24=(-c46-c67+c54+c35+c13-c12)-c24=-5-9+8+7+2-4-6=-7,z34-c34=(-c46-c67+c57+c35)-c34=-5-9+8+7-3=-2,1,2,5,4,3,6,7,b1=9,b2=-3,b3=-5,b4=8,b5=4,b6=-7,b7=-6,c12=4,c14=6,c46=5,c13=2,c34=3,c45=1,c35=7,c67=9,c57=8,确定离基变量,x12=3,x13=6,x35=1,x57=5,x46=8,x67=1,min x67,x46=min1,8=1,x67离基,1,2,5,4,3,6,7,b1=9,b2=-3,b3=-5,b4=8,b5=4,b6=-7,b7=-6,c12=4,c14=6,c46=5,c13=2,c34=3,c45=1,c35=7,c67=9,c57=8,得到新的基础可行解,x12=3,x13=6,x35=1,x57=6,x46=7,x45=1,1,2,5,4,3,6,7,b1=9,b2=-3,b3=-5,b4=8,b5=4,b6=-7,b7=-6,c12=4,c14=6,c46=5,c13=2,c34=3,c45=1,c35=7,c67=9,c57=8,求非基变量x24的检验数,x12=3,x13=6,x35=1,x57=6,x46=7,x45=1,1,2,5,4,3,6,7,b1=9,b2=-3,b3=-5,b4=8,b5=4,b6=-7,b7=-6,c12=4,c14=6,c46=5,c13=2,c34=3,c45=1,c35=7,c67=9,c57=8,x12=3,x13=6,x35=1,x57=6,x46=7,x45=1,求非基变量x34的检验数,z24-c24=(-c45+c35+c13-c12)-c24=-1+7+2-4-6=-2,1,2,5,4,3,6,7,b1=9,b2=-3,b3=-5,b4=8,b5=4,b6=-7,b7=-6,c12=4,c14=6,c46=5,c13=2,c34=3,c45=1,c35=7,c67=9,c57=8,x12=3,x13=6,x35=1,x57=6,x46=7,x45=1,求非基变量x67的检验数,确定进基变量,z24-c24=(-c45+c35+c13-c12)-c24=-1+7+2-4-6=-2,z34-c34=(-c45+c35)-c34=-1+7-3=+3,1,2,5,4,3,6,7,b1=9,b2=-3,b3=-5,b4=8,b5=4,b6=-7,b7=-6,c12=4,c14=6,c46=5,c13=2,c34=3,c45=1,c35=7,c67=9,c57=8,x12=3,x13=6,x35=1,x57=6,x46=7,x45=1,确定离基变量,minx35=1,x35离基,1,2,5,4,3,6,7,b1=9,b2=-3,b3=-5,b4=8,b5=4,b6=-7,b7=-6,c12=4,c14=6,c46=5,c13=2,c34=3,c45=1,c35=7,c67=9,c57=8,x12=3,x13=6,x34=1,x57=6,x46=7,x45=2,得到新的基础可行解,1,2,5,4,3,6,7,b1=9,b2=-3,b3=-5,b4=8,b5=4,b6=-7,b7=-6,c12=4,c14=6,c46=5,c13=2,c34=3,c45=1,c35=7,c67=9,c57=8,x12=3,x13=6,x34=1,x57=6,x46=7,x45=2,分别求非基变量x24 、x35、 x67的检验数,z24-c24=(c34+c13-c12)-c24=3+2-4-6=-5z35-c35=(c45+c34)-c35=1+3-7=-3z67-c67=(c57-c45+c46)-c67=8+1-5-9=-5,获得最优解,1,2,5,4,3,6,7,b1=9,b2=-3,b3=-5,b4=8,b5=4,b6=-7,b7=-6,c12=4,c14=6,c46=5,c13=2,c34=3,c45=1,c35=7,c67=9,c57=8,x12=3,x13=6,x34=1,x57=6,x46=7,x45=2,最优解,最优解如上图所示min z=c12x12+c13x13+c34x34+c45x45+c46x46+c57x57 =(43)+(2 6)+(3 1)+(1 2)+(5 7)+(8 6)=112,1,2,5,4,3,6,7,最大流问题,3,6,11,2,7,4,3,8,4,7,12,5,uij,求从1到7的最大流,1,2,5,4,3,6,7,3,6,11,2,7,4,3,8,4,7,12,5,uij,检查每一条边不饱和的方向,用 表示,x=0,x=0,x=0,x=0,x=0,x=0,x=0,x=0,x=0,x=0,x=0,x=0, =min12, 26, 67=min3,6,12=3 =min13, 35, 57=min11,4,5=4,1,2,5,4,3,6,7,3,6,11,2,7,4,3,8,4,7,12,5,uij,寻找从1到7的不饱和链,用 表示,求出每一条不饱和链的间隙 ,x=0,x=0,x=0,x=0,x=0,x=0,x=0,x=0,x=0,x=0,x=0,x=0,=3,=6,=12,=11,=4,=5,1,2,5,4,3,6,7,3,6,11,2,7,4,3,8,4,7,12,5,uij,增加不饱和链的流量检查每一条边不饱和的方向,用 表示,x=3,x=3,x=4,x=0,x=0,x=0,x=0,x=0,x=3,x=4,x=4,x=0,f=7,f=7,寻找从1到7的不饱和链,用 表示,求出每一条不饱和链的间隙 ,1,2,5,4,3,6,7,3,6,11,2,7,4,3,8,4,7,12,5,uij,x=3,x=3,x=4,x=0,x=0,x=0,x=0,x=0,x=3,x=4,x=4,x=0,=7,f=7,f=7,=min13, 34, 46 , 67=min7,3,4,8=3,=3,=4,=9,1,2,5,4,3,6,7,3,6,11,2,7,4,3,8,4,7,12,5,uij,增加不饱和链的流量检查每一条边不饱和的方向,用 表示,x=3,x=3,x=7,x=0,x=0,x=3,x=3,x=0,x=6,x=4,x=4,x=0,f=10,f=10,寻找从1到7的不饱和链,用 表示,求出每一条不饱和链的间隙 ,1,2,5,4,3,6,7,3,6,11,2,7,4,3,8,4,7,12,5,uij,x=3,x=3,x=7,x=0,x=0,x=3,x=3,x=0,x=6,x=4,x=4,x=0,f=10,f=10, =min13, 32, 26 , 67=min4,2,3,6=2,=4,=2,=3,=6,增加不饱和链的流量检查每一条边不饱和的方向,用 表示,1,2,5,4,3,6,7,3,6,11,2,7,4,3,8,4,7,12,5,uij,x=3,x=5,x=9,x=2,x=0,x=3,x=3,x=0,x=8,x=4,x=4,x=0,f=12,f=12,寻找从1到7的不饱和链,1,2,5,4,3,6,7,3,6,11,2,7,4,3,8,4,7,12,5,uij,x=3,x=5,x=9,x=2,x=0,x=3,x=3,x=0,x=8,x=4,x=4,x=0,f=12,f=12,已不存在从1到7的不饱和链。获得最大流, f=12X=1,3,X=2,4,5,6,7最小割集为(1,2),(3,2),(3,4),(3,5),用 表示最小割集的容量为u12+u32+u34+u35=3+2+3+4=12,1,2,3,4,5,6,7,8,2,6,3,9,5,8,4,7,6,10,4,11,7,12,6,最短路径问题,求1到8的最短路径,1,2,3,4,5,6,7,8,2,6,3,9,5,8,4,7,6,10,4,11,7,12,6,w1=0,X=1min0+2,0+6,0+3=min2,6,3=2,w2=2,1,2,3,4,5,6,7,8,2,6,3,9,5,8,4,7,6,10,4,11,7,12,6,w1=0,X=1,2min2+9,2+5,2+4,0+6,0+3=min11,7,6,6,3=3,w4=3,w2=2,1,2,3,4,5,6,7,8,2,6,3,9,5,8,4,7,6,10,4,11,7,12,6,w1=0,w2=2,X=1,2,4min2+9,2+5,2+4,0+6,3+7,3+6,3+10=min11,7,6,6,10,9,13=6,w3=6,w4=3,1,2,3,4,5,6,7,8,2,6,3,9,5,8,4,7,6,10,4,11,7,12,6,w1=0,w2=2,X=1,2,3,4min2+9,2+5,6+8,3+6,3+10=min11,7,14,9,13=7,w6=7,w4=3,w3=6,1,2,3,4,5,6,7,8,2,6,3,9,5,8,4,7,6,10,4,11,7,12,6,w1=0,w2=2,X=1,2,3,4,6min2+9,7+4,7+11,3+10=min11,11,18,13=11,w5=11,w4=3,w3=6,w6=7,1,2,3,4,5,6,7,8,2,6,3,9,5,8,4,7,6,10,4,11,7,12,6,w1=0,w2=2,X=1,2,3,4,5,6min11+12,7+7,7+11,3+10=min23,14,18,13=13,w7=13,w4=3,w3=6,w6=7,w5=11,1,2,3,4,5,6,7,8,2,6,3,9,5,8,4,7,6,10,4,11,7,12,6,w1=0,w2=2,X=1,2,3,4,6,7min11+12,7+7,13+6=min23,14,19=14,w8=14,w4=3,w3=6,w6=7,w5=11,w7=13,1,2,3,4,5,6,7,8,2,6,3,9,5,8,4,7,6,10,4,11,7,12,6,w1=0,w2=2,X=1,2,3,4,6,7,8min11+12,7+7,13+6=min23,14,19=14,w8=14,w4=3,w3=6,w6=7,w5=11,w7=13,w8=14,1,2,3,4,5,6,7,8,2,6,3,9,5,8,4,7,6,10,4,11,7,12,6,w1=0,w2=2,w4=3,w3=6,w6=7,w5=11,w7=13,w8=14,从1到8的最短路径为14,最短路径为12 6 8从1到其他节点的最短路径如上图红线所示,其中到3和5的最短路径有两条。,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,一、最短路径问题,求从A到E的最短路径,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f5(E)=0,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D1)=5,f5(E)=0,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D2)=2,f5(E)=0,f4(D1)=5,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D2)=2,f5(E)=0,f3(C1)=8,f4(D1)=5,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D2)=2,f5(E)=0,f3(C2)=7,f4(D1)=5,f3(C1)=8,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D2)=2,f5(E)=0,f3(C3)=12,f4(D1)=5,f3(C1)=8,f3(C2)=7,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D2)=2,f5(E)=0,f3(C3)=12,f4(D1)=5,f2(B1)=20,f3(C2)=7,f3(C1)=8,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D2)=2,f5(E)=0,f3(C3)=12,f4(D1)=5,f2(B2)=14,f3(C2)=7,f3(C1)=8,f2(B1)=21,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D2)=2,f5(E)=0,f3(C3)=12,f4(D1)=5,f2(B3)=19,f3(C2)=7,f3(C1)=8,f2(B1)=21,f2(B2)=14,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D2)=2,f5(E)=0,f3(C3)=12,f4(D1)=5,f2(B3)=19,f3(C2)=7,f3(C1)=8,f1(A)=19,f2(B2)=14,f2(B1)=21,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D2)=2,f5(E)=0,f3(C3)=12,f4(D1)=5,f2(B3)=19,f3(C2)=7,f3(C1)=8,f1(A)=19,f2(B2)=14,f2(B1)=21,状态 最优决策 状态 最优决策 状态 最优决策 状态 最优决策 状态,A ( A,B2) B2,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D2)=2,f5(E)=0,f3(C3)=12,f4(D1)=5,f2(B3)=19,f3(C2)=7,f3(C1)=8,f1(A)=19,f2(B2)=14,f2(B1)=21,状态 最优决策 状态 最优决策 状态 最优决策 状态 最优决策 状态,A ( A,B2) B2 (B2,C1) C1,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D2)=2,f5(E)=0,f3(C3)=12,f4(D1)=5,f2(B3)=19,f3(C2)=7,f3(C1)=8,f1(A)=19,f2(B2)=14,f2(B1)=21,状态 最优决策 状态 最优决策 状态 最优决策 状态 最优决策 状态,A ( A,B2) B2 (B2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论