膨胀的Poisson过程及其在金融中的应用.doc_第1页
膨胀的Poisson过程及其在金融中的应用.doc_第2页
膨胀的Poisson过程及其在金融中的应用.doc_第3页
膨胀的Poisson过程及其在金融中的应用.doc_第4页
膨胀的Poisson过程及其在金融中的应用.doc_第5页
免费预览已结束,剩余15页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

膨胀的Poisson过程及其在金融中的应用应用数学MATHEMATICAAPPLICATA2006.19(4):793798DilatedPoissonProcessesandtheirApplicationsinFinanceHUANGGuanghui(黄光辉),WANJian-ping(万建平)(DeP口rtme;ofMathematics,HuazhongUniversityofScience&Technology,Wuhan430074,China)Abstract:Akindofpurejumpprocesseswithdependentincrements,calleddilatedpoissonprocesses,wasdefined.Ageneralized疗-jumppriceprocesswasusedtodescribethemovementofstockprice.Usingthiskindofstochasticprocesses,wedecomposedtheprofitofthemonetarymarketportfolio,generatingthesamecashflowatthepointedtimeasitsstockmarketcounterpart,intoadeterministictermandadilatedPoissonterm.ItwasshowedthatinvestmentinstockmarketiSmoreriskythaninthemonetarymarket,consistingwithourobservationoftherealworld.Keywords:Stochasticintegral;CompoundPoissonprocess;InvestmentriskCLCNumber:AMS(2000)SubjectClassification:60H05Documentcode:AArticleID:1001-9847(2006)040793061.IntrOductiOnAndersonandMOiler引.demonstratethepresenceoflong-termdependenceandheavytaileddistributioninhighfrequencyfinancialdata.BecausetheincrementsoffractionalBrownianmotionarelongtermdependenceandheavytaileddistribution,manyauthorsusefractionalBrownianmotiontoreplacetheBrownianmotioninthestandardfinancialmodels.Alongthisline,wewanttousethedilatedpoissonprocesstodescribethebehavioroftheprofitprocessinthemonetarymarket.Thereareseveralkindsofprocesseswhoseincrementshavelongtermdependenceandheavytaileddistribution.Sait6LusesthefractionalpowersofL6vyLaplacianactingonwhitenoisedistributionstogeneratestableprocesses.Wang嘲replacetheBrownianmotionintheintegralrepresentationoffractionalBrownianmotionbyPoissonmartingale,generatingthePoissonfractionalprocesses.LaskinusestheRiemannLiouvilletypefractionalderivativeoperatoractingontheKolmogorovFellequationofPoissonprocesstogeneratethefractionalReceiveddate:Mar15,2006Foundationitem:SupportedbyNaturalScienceFoundationofChinaGrantBiography:HUANGGuanghui,male,Han,Sichuan.PhDcandidate,majorinStochasticAnalysisandMathematicalFinance.794MATHEMATICAAPPLICATA2006Po.is1sonprocIeIss.PipirasandTaqt.qugUe3neursaetethtehekderilnaetledwfitrhacati.dnilaaltisotnabflae.mto.rtdi.nins.tBheecaiunsteegtrhaelwithrespectt.astablemotion.gneahd.d:u.u:二二+ion,wemaymethodsgeneratingt+hoseprocessesaretsimilartothatoIractlonalDrOW|lllltil:lllxuttavlkernelt.callthetmfrarctioantaeldtPyp.ep.rnocpers.secess.sIenstahnisdpaapppelry,twheemwillu,.sesomell,lateoJl_mteg,.tolmancemarkettneuxygene甜扑ynthedefn0nofthednatedPoiThepapersorganizedasfollows.InSectionZwegVetnedenunuuuuus.npr.ce:ss,usingtheintegralw.ithrie.spect.toaTchommpo.mundnP.o.isso.nhpo.c.ewssannddthhe,depiennd.-fienceoncrementsalsobegiveninthssection.1nen()【Ieuu.2.ThedilatedpoisssonprocessesSupposethatN一N,t0)isaPoissonprocesswithintensity,>0,andZi(1,2,N)isanindependentandidenticallydistributedsequenceofrandomvariablesindependentofN.Thenx=lzt(o)isacompoundPoionp?WedenotebyK,withfl>0,theintegralkernel加三withthisintegralkernelwedefinetheintegral.perat.rJ.nLf.reVeryLasJ垒K*.Lemma1iscontinuousonL.ProofNoticethatJ车(z)Idzl:.er.cdIdzI8(t川池:+_dflldJ一.J一一rI车()IdtfdtII车()IJ一.o0一-bOOl()ldtI1一l()lI1I1J一.L1.(1)(2)whichpcl1onmarpleteth.p.j,finea?-t?f.reveryRk1FromthecontinuityofonLwecandestochasticmtegratemar卫.,tneauccLwithrespectt.anyc.mp.undP.iss.npr.cesspathbypath?Thatisthef.ll.wingintegraliswelldefined广十a.x2()=I卫()dF(5,),Ja.(3)wherReF(s.,.we)thiserae.mp.ndP.eralkernel,weisalsoadilationfactorinourgnamethest.chasti.BecausetherenteralLIaucLllcI上cessesgeneratedbythiskernelthedilatedPoisonpO.e.仁仁.I1一NO.4HuANGGuang-huieta1.:DilatedPoiss.nPr.cessesandtheirAppli.ati.795Definition1Forevery卢>0,thedilatedPoiss.nPr.cess()isdefinedasr+oo()II1【0.f(s)dx(s),Joowherex()isac.mp.undPoiss.nprocess,and1.istheindicat.r.fEo,.Actingtheintegraloperatorontheindicator1.,wgtI1c.?(z):卢er1o司()d一l-er,一r,X0;0<zSRemark2IfourcompoundPoissonprocessX()isdefinedgralin(4)canbewrittenas垒lIt0,f()dx(z)一re_(epc一1)dX(z)+z(一1)dX(x).(4)z>S.Onthewholeline,theinteInthispaper,wef0cusonthecompoundPoissonprocessesontherighthalfline,soourdiltedPoissonprocessesare尘Ie一(一1)dX(x).(5)WecanrewritethestochasticintegralrepresentationofthedilatedPoissonprocessesntothefollowingsummationform:-<Zi(1-e-)=.?O<IuiwherezisthetharrivaltimeofthecompoundPoissonpr0cess,andZlisthelevelofithjump.For0<l<2<3<4<+o.,weconsiderthefollowingtWOincrements:xxandXt一磁.Obvi0uslythetWOincrementsaredependent.Wecanalsofindthatthedisributionofincrementisdeterminednotonlybythelengthoftheintervall,tzb.utalsobythetimet1.SodilatedPoissonprocessesarenotL邑Vyprocesses.ToillustratethiswegivethecovarianceofthetWOincrementsinthefollowingproposition?Proposition1SupposeZissymmetricsuchthatEZ)=0,thenE(一磁)(磁一)一2fl(ef3一)(eple-2)(e2pt一1)+(2一p.)(.一)EZ2),andtheaboveformulaispositive.ProofFromthedefinitionofdilatedPoissonprocesse?,wehavet(xt磁)(x一xt)=(e-plep2)(e3ep4)796MATHEMATICAAPPLICATA2006Z(1一e一+lNtZz(1-ez),N1+1N2+Zi(1一e-),=N1+l4(1一e-).(6),Nt3+lTakenexpectationonthebothsidesof(6),thedesiredresultsfollows.3.TheMomentsofGrossReturnsWeadopttheRydbergandShephardframeworktodescribethepriceprocessSrSo+竺lZl,wheretheNrdenotesthetota1jumpsfromtimezerototime.wecangeneTatethesamecashflowattimetinthemonetarymarket,markingtothestockpricechanges.Attimezero,wedepositSoe-inthebank,withtheinterestrateWhentheithjumpofstockpricetakesplaceattimez,weaddourdepositwiththeamountofZe一.Notethatthenegativeamountofdepositmenasborrowing.ItisobviouslythatattimetthemarketvalueofourmonetaryportfolioisalsoSf.ItisobviouslythatthegrossreturnfrommonetarymarketcanbedecomposedintoN,s.一s.e+Zi(1一e-)i=1一S.(1一e一)+X,(7)thefirsttermin(7)isdeterministic,andthesecondtermisourdilatedPoissonprocess,arandoraterm.DenotehteprofitinstockmarketasYl一NtZ.Proposition2DenotetherandomjumplevelbyZ.ThenthefirstandsecondordermomentsofprofitfromstockmarketareEY=atEZ;E)一2tEZ2)+t(EZ);(8)VarY)一2tEZ).ProofFromRoss.inviewoftheindependenceofNandZi,wehaveZ,l/Z,l,Z,一e一一e,+,f,)z=,-,一e一+No.4HUANGGuanghuieta1.:DilatedPoissonProcessesandtheirApplications797EY):EZ)=EN)Ez);E)一2tE)+t(EZ),thedesiredresultsfollows.NotethatundertheconditionthatNl,thearrivaltimesX1,X2,Xhavethesamedistributionastheorderstatisticsofindependentrandomvariablesuniformlydistributedontheinterval(0,).Wehavethefollowingproposition.Proposition3DenotetherandomjumplevelbyZ.ThenthefirstandsecondordermomentsofXareExf):(卜1十1e一)E(Z);x一(t一+吾e一一1)EZ2)+(一1十1e一)(E(Z)ProofDenotebyUtherandomvariableuniformlydistributedontheinterval(0,).NoticethatEXf)一EN)EZ)E1一e-0(),E(Xf)一EN)EZ2)E(1一e一)+(EN)(EZ)(E1一e一),thedesiredresultsfollows.Proposition4ThefirstandsecondordermomentsofprofitfrommonetarymarketareE(:s.(1-e-a)+(一1十1e一)E(z;E)一S5(1一e-)+21So(1一e呻)(1十1e一)Ez)+(一翕+吾ee-2)EZz)+(一1十1e一)(Ez);Var)一t-+吾e呻一e_2)EZ2).ProofInviewof(7),wehaveE)一So(1一e一)+EXf),(9)andE)一S5(1一e-)+2S.(1一e-)EX)+E(Xf)z),(10)whichcompletetheproof.TheoremWhentheinvestmentinmonetarymarketmarkingtothestockpricechanges,investinginthestockmarketismoreriskythaninthemonetarymarket.ProofNoticethatthedifferentofthetWOvariancesis798MATHEMATICAAPPLICATA2006Var)-Vary):(一+舌e呻一e)Ez.)whichisobviouslynegative.4.ConclusionThepatternofstockpricemovementisdiscussedintheprevioussections,underthehypothesisthatitisajumpprocess.Andtheriskinstockmarketiscomparedwithrespecttothatofmonetarymarketmeasuredinvariance.Itisinterestingtoshowthatthepreviousoneismoreriskythanthelatteroneunderourassumption.Thisconclusionconsistswithourintuitionabouttherealworld.RefeFences:1233435367891OAndersonT,BollerslevT.Heterogeneousinformationarrivalsandreturnvolatilitydynamicsiuncoveringthelongruninhigh-frequencyreturnsJ.J.JFiance,1997,52:9751006.M011erWA,DacorognaMA,Picte0V.HeavytailsinhighfrequencyfinancialdataA.InapracticalguidetOheavytails:statisticaltechniquesandapplicationsC.AdlerRA,FeldmanRE,TaqquMS.Boston:Birkhuser,1998,5577.ElloittRJ,VanDJHoek.Ageneralfractionalwhitenoisetheoryan

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论