




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2 直线和圆锥曲线的参数方程2.2.2圆的参数方程2.2.3椭圆的参数方程2.2.4双曲线的参数方程1.了解圆锥曲线参数方程的推导过程.2.掌握圆和圆锥曲线的参数方程.(易错易混点)3.能用圆、椭圆参数方程解决有关问题.(难点)教材整理1圆的参数方程1.标准圆的参数方程已知一个圆的圆心在原点,半径为r,设点P(x,y)是圆周上任意一点,连结OP,令OP与x轴正方向的夹角为,则唯一地确定了点P在圆周上的位置.作PMOx,垂足为M,显然,POM(如图223).则在RtPOM中有OMOPcos ,MPOPsin ,图223即(为参数).这就是圆心在原点,半径为r的圆的参数方程.参数的几何意义是OP与x轴正方向的夹角.2.一般圆的参数方程以(a,b)为圆心,r为半径的圆,普通方程为(xa)2(yb)2r2,它的参数方程为(为参数,a,b是常数).填空:(1)圆心为(2,1),半径为2的圆的参数方程是_.(2)在圆(为参数)中,圆的圆心是_,半径是_.(3)圆(为参数)上的点到O(0,0)的距离的最大值是_,最小值是_.【解析】(1)(为参数).(2)由圆的参数方程知圆心为(1,0),半径为1.(3)由圆的参数方程知圆心为(1,1),半径为1.圆心到原点的距离为,最大值为1,最小值为1.【答案】(1)(为参数)(2)(1,0)1(3)11教材整理2椭圆与双曲线的参数方程1.椭圆的参数方程(1)椭圆的中心在原点标准方程为1,其参数方程为(为参数).参数的几何意义是以a为半径所作圆上一点和椭圆中心的连线与x轴正半轴的夹角.(2)椭圆方程不是标准形式其方程也可表示为参数方程的形式,如1(ab0),参数方程可表示为(为参数).2.双曲线的参数方程当以F1,F2所在的直线为x轴,以线段F1F2的垂直平分线为y轴建立直角坐标系,双曲线的普通方程为1(a0,b0).此时参数方程为(为参数).其中预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑: 求圆的参数方程圆(xr)2y2r2(r0),点M在圆上,O为原点,以MOx为参数,求圆的参数方程.【精彩点拨】根据圆的特点,结合参数方程概念求解.【自主解答】如图所示,设圆心为O,连结OM,O为圆心,MOx2,1.确定圆的参数方程,必须根据题目所给条件,否则,就会出现错误,如本题容易把参数方程写成2.由于选取的参数不同,圆有不同的参数方程.1.已知点P(2,0),点Q是圆上一动点,求PQ中点的轨迹方程,并说明轨迹是什么曲线.【解】设中点M(x,y).则即(为参数),这就是所求的轨迹方程.它是以(1,0)为圆心,以为半径的圆.椭圆的参数方程及其应用如图224所示,已知点M是椭圆1(ab0)上在第一象限的点,A(a,0)和B(0,b)是椭圆的两个顶点,O为原点,求四边形MAOB的面积的最大值.图224【精彩点拨】本题可利用椭圆的参数方程,把面积的最大值问题转化为三角函数的最值问题求解.【自主解答】M是椭圆1(ab0)上在第一象限的点,由椭圆1的参数方程为(为参数),故可设M(acos ,bsin ),其中0,因此,S四边形MAOBSMAOSMOBOAyMOBxMab(sin cos )absin.所以,当时,四边形MAOB面积的最大值为ab.本题将不规则四边形的面积转化为两个三角形的面积之和,这是解题的突破口和关键,用椭圆的参数方程,将面积表示为参数的三角函数求最大值,思路顺畅,解法简捷,充分体现了椭圆的参数方程在解决与椭圆上点有关最值问题时的优越性.2.椭圆1(ab0)与x轴的正向交于点A,若这个椭圆上存在点P,使OPAP,(O为原点),求离心率e的范围. 【导学号:12990024】【解】设椭圆的参数方程是(ab0),则椭圆上的点P(acos ,bsin ),A(a,0).OPPA,1,即(a2b2)cos2a2cos b20,解得cos 1(舍去)或cos .1cos 1,11.又椭圆离心率0e1.从而e1.双曲线的参数方程及其应用如图225所示,设P为等轴双曲线x2y21上的一点,F1,F2是两个焦点,证明:|PF1|PF2|OP|2.图225【精彩点拨】将双曲线方程化为参数方程再利用三角运算进行证明.【自主解答】因为双曲线的方程为x2y21,所以设P.F1(,0),F2(,0),|PF1| ,|PF2| ,|PF1|PF2| 1.|OP|2tan21,|PF1|PF2|OP|2.1.与双曲线上点有关的问题,常利用其参数方程转化为三角的计算与证明问题.2.对由参数方程给出的双曲线确定其几何性质问题,常将其化为普通方程后,再求解.3.求证:双曲线1(a0,b0)上任意一点到两渐近线的距离的乘积是一个定值.【证明】由双曲线1,得两条渐近线的方程是:bxay0,bxay0,设双曲线上任一点的坐标为(asec ,btan ),它到两渐近线的距离分别是d1和d2,则d1d2(定值).圆的参数方程的应用探究1给定参数方程其中a,b是常数.(1)如果r是常数,是参数,那么参数方程表示的曲线是什么?(2)如果是常数,r是参数,那么参数方程表示的曲线是什么?【提示】(1)参数方程表示的曲线是以(a,b)为圆心,r为半径的圆(r0).(2)参数方程表示的曲线是过(a,b)点,且倾斜角为的直线.探究2圆的参数方程中,参数有什么实际意义?【提示】在圆的参数方程中,设点M绕点O转动的角速度为(为常数),转动的某一时刻为t,因此取时刻t为参数可得圆的参数方程为:(t为参数),此时参数t表示时间.若以OM转过的角度(M0OM)为参数,可得圆的参数方程为(为参数),此时具有明显的几何意义.探究3利用圆的参数方程表示其上任意点坐标时有什么优越性?【提示】将其横纵坐标只用一个参数(角)来表示,可将与点的坐标有关的问题转化为三角问题求解.设方程(为参数)表示的曲线为C.(1)判断C与直线xy20的位置关系;(2)求曲线C上的动点到原点O的距离的最小值;(3)点P为曲线C上的动点,当|OP|最小时(O为坐标原点),求点P的坐标;(4)点M是曲线C上的动点,求其与点Q(1,)连线中点的轨迹.【精彩点拨】本题考查圆的参数方程的应用,以及运算和转化与化归能力.(1)利用圆心到直线的距离与半径的关系判断.(2)设P的坐标表示出|OP|,利用三角函数知识求最值.(3)利用(2)取最小值的条件即可.(4)设出点M的坐标,进而表示出MQ中点坐标,即得轨迹的参数方程.【自主解答】(1)曲线C是以(1,)为圆心,半径为1的圆,则圆心(1,)到直线xy20的距离为1,故直线和圆相切.(2)设圆上的点P(1cos ,sin )(02).|OP|,当时,|OP|min1.(3)由(2)知,x1cos ,ysin ,P.(4)设MQ的中点为(x,y).M(1cos ,sin ),Q(1,),(为参数).所以中点轨迹是以原点为圆心,为半径的圆.1.与圆的参数方程有关的问题求解时,可直接利用参数方程求解,也可转化为普通方程问题求解.2.与圆上点有关的距离最值问题,需建立目标函数求解时,常利用圆的参数方程,将圆上的点用角表示,从而将待求最值,转化为三角函数的最值问题求解,但要注意参数的取值范围.4.如图226,设矩形ABCD的顶点C的坐标为(4,4),点A在圆x2y29(x0,y0)上移动,且AB,AD两边分别平行于x轴,y轴.求矩形ABCD面积的最小值及对应点A的坐标.图226【解】设A(3cos ,3sin )(090),则|AB|43cos ,|AD|43sin ,S|AB|AD|(43cos )(43sin )1612(cos sin )9cos sin .令tcos sin (1t),则2cos sin t21.S1612t(t21)t212t2,t时,矩形ABCD的面积S取得最小值.此时解得对应点A的坐标为或.1.圆的参数方程为:(为参数),则圆的圆心坐标为() 【导学号:12990025】A.(0,2)B.(0,2)C.(2,0)D.(2,0)【解析】由圆的参数方程知,圆心为(2,0).【答案】D2.圆心在点(1,2),半径为5的圆的参数方程为()A.(02)B.(02)C.(0)D.(02)【解析】圆心在点C(a,b),半径为r的圆的参数方程为(0,2).故圆心在点(1,2),半径为5的圆的参数方程为(02).【答案】D3.曲线C:(为参数)的离心率为_.【解析】由曲线C的参数方程可以看出a3,b,得a29,b25,c24,所以e.【答案】4.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 蓝莓原浆采购合同范本
- 车主满意计划协议
- 工地沙石供应合同范本
- 物资采购合同范本
- 蛔虫性肠梗阻驱虫治疗护理查房
- 高速电机出售合同范本
- alc板材安装合同范本
- 卤货店加盟合同范本
- 企业劳动劳务合同范本
- 进口食品联营合同范本
- 医院腹腔镜手术知情同意书
- p型半导体和n型半导体课件
- GB/T 748-2005抗硫酸盐硅酸盐水泥
- GB/T 28287-2012足部防护鞋防滑性测试方法
- 芜湖宜盛置业发展有限公司招聘3名编外工作人员(必考题)模拟卷
- 走好群众路线-做好群众工作(黄相怀)课件
- 混凝土结构设计原理教学教案
- 民间文学(全套课件)
- 专升本00465心理卫生与心理辅导历年试题题库(考试必备)
- 既有重载铁路无缝线路改造及运维技术探索
- 2022年教师副高职称评答辩范文(七篇)
评论
0/150
提交评论