新课程高中数学必修一训练题参考答案及解析上.doc_第1页
新课程高中数学必修一训练题参考答案及解析上.doc_第2页
新课程高中数学必修一训练题参考答案及解析上.doc_第3页
新课程高中数学必修一训练题参考答案及解析上.doc_第4页
新课程高中数学必修一训练题参考答案及解析上.doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新课程高中数学训练题参考答案及解析上(数学1必修)第一章(上) 基础训练A组一、选择题 1. C 元素的确定性;2. D 选项A所代表的集合是并非空集,选项B所代表的集合是并非空集,选项C所代表的集合是并非空集,选项D中的方程无实数根;3. A 阴影部分完全覆盖了C部分,这样就要求交集运算的两边都含有C部分;4. A (1)最小的数应该是,(2)反例:,但(3)当,(4)元素的互异性5. D 元素的互异性;6. C ,真子集有。二、填空题 1. 是自然数,是无理数,不是自然数,; 当时在集合中2. ,非空子集有;3. ,显然4. ,则得5. ,。三、解答题 1.解:由题意可知是的正约数,当;当;当;当;而,即 ; 2.解:当,即时,满足,即;当,即时,满足,即;当,即时,由,得即; 3.解:,而,当, 这样与矛盾; 当符合 4.解:当时,即; 当时,即,且 ,而对于,即,(数学1必修)第一章(上) 综合训练B组一、选择题 1. A (1)错的原因是元素不确定,(2)前者是数集,而后者是点集,种类不同,(3),有重复的元素,应该是个元素,(4)本集合还包括坐标轴2. D 当时,满足,即;当时,而,;3. A ,;4. D ,该方程组有一组解,解集为;5. D 选项A应改为,选项B应改为,选项C可加上“非空”,或去掉“真”,选项D中的里面的确有个元素“”,而并非空集;6. C 当时,二、填空题 1. (1),满足,(2)估算,或,(3)左边,右边2. 3. 全班分类人:设既爱好体育又爱好音乐的人数为人;仅爱好体育的人数为人;仅爱好音乐的人数为人;既不爱好体育又不爱好音乐的人数为人 。,。 4. 由,则,且。5. , 当中仅有一个元素时,或;当中有个元素时,;当中有两个元素时,;三、解答题1 解:由得的两个根,即的两个根, 2.解:由,而,当,即时,符合;当,即时,符合;当,即时,中有两个元素,而;得 。3.解: ,而,则至少有一个元素在中,又,即,得而矛盾,4. 解:,由,当时,符合;当时,而,即或。(数学1必修)第一章(上) 提高训练C组一、选择题 1. D 2. B 全班分类人:设两项测验成绩都及格的人数为人;仅跳远及格的人数为人;仅铅球及格的人数为人;既不爱好体育又不爱好音乐的人数为人 。,。3. C 由,;4. D 选项A:仅有一个子集,选项B:仅说明集合无公共元素,选项C:无真子集,选项D的证明:,;同理, ;5. D (1);(2);(3)证明:,;同理, ;6. B ;,整数的范围大于奇数的范围7B 二、填空题1. 2. (的约数)3. , 4. 5. ,代表直线上,但是挖掉点,代表直线外,但是包含点;代表直线外,代表直线上,。三、解答题1. 解:, 2. 解:,当时,而 则 这是矛盾的;当时,而,则; 当时,而,则; 3. 解:由得,即, , 4. 解:含有的子集有个;含有的子集有个;含有的子集有个;,含有的子集有个,。(数学1必修)第一章(中) 基础训练A组一、选择题 1. C (1)定义域不同;(2)定义域不同;(3)对应法则不同;(4)定义域相同,且对应法则相同;(5)定义域不同; 2. C 有可能是没有交点的,如果有交点,那么对于仅有一个函数值;3. D 按照对应法则, 而,4. D 该分段函数的三段各自的值域为,而 ;5. D 平移前的“”,平移后的“”,用“”代替了“”,即,左移6. B 。二、填空题 1. 当,这是矛盾的;当;2. 3. 设,对称轴,当时,4. 5. 。三、解答题 1.解:,定义域为2.解: ,值域为3.解:, 。4. 解:对称轴,是的递增区间, (数学1必修)第一章(中) 综合训练B组一、选择题 1. B ;2. B 3. A 令4. A ;5. C ;6. C 令。二、填空题 1. ; 2. 令;3. 4 当当;5. 得三、解答题1. 解: 2. 解:(1)定义域为(2)定义域为 (3)定义域为 3. 解:(1),值域为 (2) 值域为(3)的减函数, 当值域为4. 解:(五点法:顶点,与轴的交点,与轴的交点以及该点关于对称轴对称的点)(数学1必修)第一章(中) 提高训练C组一、选择题 1. B 2. D 设,则,而图象关于对称,得,所以。3. D 4. C 作出图象 的移动必须使图象到达最低点5. A 作出图象 图象分三种:直线型,例如一次函数的图象:向上弯曲型,例如 二次函数的图象;向下弯曲型,例如 二次函数的图象;6. C 作出图象 也可以分段求出部分值域,再合并,即求并集二、填空题1. 当 当 2. 3. 当时,取得最小值4. 设把代入得5. 由得三、解答题1. 解:令,则 ,当时,2. 解: 显然,而(*)方程必有实数解,则 , 3. 解: 得,或 。4. 解:显然,即,则得,.(数学1必修)第一章下 基础训练A组一、选择题 1. B 奇次项系数为2. D 3. A 奇函数关于原点对称,左右两边有相同的单调性4. A 5 A 在上递减,在上递减,在上递减,6. A 为奇函数,而为减函数。二、填空题1 奇函数关于原点对称,补足左边的图象2. 是的增函数,当时,3 该函数为增函数,自变量最小时,函数值最小;自变量最大时,函数值最大4 5 (1),不存在;(2)函数是特殊的映射;(3)该图象是由离散的点组成的;(4)两个不同的抛物线的两部分组成的,不是抛物线。三、解答题1解:当,在是增函数,当,在是减函数;当,在是减函数,当,在是增函数;当,在是减函数,在是增函数,当,在是增函数,在是减函数。2解:,则,3解:,显然是的增函数, 4解:对称轴(2)对称轴当或时,在上单调或。(数学1必修)第一章(下) 综合训练B组 一、选择题 1. C 选项A中的而有意义,非关于原点对称,选项B中的而有意义,非关于原点对称,选项D中的函数仅为偶函数;2. C 对称轴,则,或,得,或3. B ,是的减函数,当 4. A 对称轴 5. A (1)反例;(2)不一定,开口向下也可;(3)画出图象可知,递增区间有和;(4)对应法则不同6. B 刚刚开始时,离学校最远,取最大值,先跑步,图象下降得快!二、填空题1 画出图象 2. 设,则,,3. 即4. 在区间上也为递增函数,即 5. 三、解答题1解:(1)定义域为,则,为奇函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论