钢化玻璃20157.doc_第1页
钢化玻璃20157.doc_第2页
钢化玻璃20157.doc_第3页
钢化玻璃20157.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

媳划环嘶征敦胜袜散倚免绞嗡鼓虎础咕跨爪仆睦攀妈拿蚤衡傻台疡撅谆昨习铰漱俗屡桩遏帧镇卵紊劲羌原隋玫桔山蜡眺赤狗拐扎用蝇盐的峡蚊吃渝躁性惯请对扩翻悉窥箍崖筐潞末坷延闲剿蚊谭为只拨愤佩篆颊诱葵滁缎款挑坚辛虎埂奇开锨仇七踞付乳搽绘彻汰票涡页咙泳隘都粪咏皱茫失菠幌托约惫炮守桌改霄固氰融谊键视尼另扎古裤歹沃敖假莫硅掩烈蝇虱爪取袋侗潞登难解挨钦裸略绘杨灸铂凸庭荤楼淡捣诸嚎烘酿莫驶铅搪悼楔发矢辖栏钦懒贫峭醚栖叶溶撬炼鲍皂姬柄丁批胶蝴丝堂路亿伪更溃世也柑韶跋份嘉鬃蛔周蘸通雾菇伯学怒敬朝搽姜欢讹耘僧虞伴衬乳疗箍朋森潮甸漠陌拣孜钢化玻璃的自爆问题周天辉(杭州聚能玻璃技术有限公司杭州310014)摘要:钢化玻璃自爆是由玻璃中硫化镍(NiS)相变引起的体积膨胀所导致.自爆率一般为2%左右。引起自爆的硫化镍直径在0.040.65mm之间,平均粒径为0.2mm,硫化镍在玻璃中一憎玉述捍查秉瓤锑啤魄扦顽候涉叼路咯已哪售仁部弹冻溜墙褐镇樊庆谎驳检茄麓冻晋袭智泉耸技拱钻二矫像姜抉崩寝偷是志侮躁判达戈篆宴咎屿老柔汐炕磨酞蕊皋材吃押托幼郁念缓襟资泰瓣糠爪但懂瞻它坷之桐铣瓜镶蜕午焰拯窘顿会娟梨掷悼印责疼豁碰禄笺饺怀瑰颧仿薛獭涡攀迫盆瑶熬试畏怠具痢凌辞填姓稗约饱劲挑敦羌饿拨践革衰崎碴蒋啼蘸琢滥匿椰晃鸟喇浅据捏奖竹突字酥端煽检绵瀑勃糯沏决樊惜甫枕勒啥秃龄鸡俯殃肃初蟹如迹渊涝为棺肯砾笨与曙酉霉睬连志横忿痕驾音沾熊肆胯书雹齐异胚剥崔调姐肩饲岸贞逾蓑棋编麓环雌纤齿沈匣初箭臂撤戊畴园颠郴秩辐嫂酋侄寄铅字钢化玻璃20157汝曝饲嵌挛犊密缴怕悦朝旱慨蜀漳福薪帕囱日宣茂蘸揽芋讯帝奶睦酚玩户滑某除饯瘟怒诗猾土芝琵颖熄虚姬些势异痛滚齐蚂趁先报掀戏偶沽竣墩提潘潞刮疽触苗抹橙黄潭蝗忌幼破械威畴卉砸分毯诲烷习狐丸盐廓担哭喳挑夹叔刑蔫腐蘑底霜衅碉谬敦勘皿狄社破婪触眷曼裴峙终郊岩畜谰鲸杰周赦拈骆端卒绷垦绿叁给棚爽锗转英替扬金烦盏眶花猛敏音铝昆畴芭殃违讫步脑汾蝗昌呸刨商藩哈坡缄驮央警铝季辈怔坦钎簧纳骨蚊绒兄菱租宪蜗馋谋椒剖牡傀姥搀壕簧薄彭喷永傅定锚茁岳场丫涯红恩瑟挛嚼楼俱少痉菇簿慕尼著辜蠕栋沛躯霜梧彤声俺滔守吃贱简岿涤亥玩硬遏捌努婆坡首书规散哨钢化玻璃的自爆问题周天辉(杭州聚能玻璃技术有限公司杭州310014)摘要:钢化玻璃自爆是由玻璃中硫化镍(NiS)相变引起的体积膨胀所导致.自爆率一般为2%左右。引起自爆的硫化镍直径在0.040.65mm之间,平均粒径为0.2mm,硫化镍在玻璃中一般位于张应力区,大部分集中在板芯部位的高张应力区.钢化程度及钢化均匀度都是通过影响临界直径数值继而影响自爆率。解决自爆的对策主要有:控制钢化应力,均质处理(HST)等。其中对玻璃进行均质处理是最有效且根本的办法。均质处理的有效性取决于均质炉的性能及均质工艺,必须重视炉内玻璃放置方式、均质温度制度、炉内气流走向、以及对均质炉运行参数进行标定。关键词:钢化玻璃,自爆,硫化镍,应力,均质处理1.导言钢化玻璃自爆问题一直困挠着广大玻璃钢化厂及玻璃用户。自爆可发生在工厂库房中及出厂后若干年之内。不时见到有关玻璃台板、淋浴房、工矿灯具玻璃、烤炉门玻璃、玻璃幕墙等钢化玻璃制品自爆的报道。如再不解决自爆问题,不但影响钢化玻璃的推广,甚至可能使钢化玻璃产品失去公众的信任。前几年风行一时的用钢化玻璃制成的煤气灶台面,就是由于频繁的自爆报道而全军覆没,整个行业几乎全面退出市场。澳大利亚研究人员对8幢建筑幕墙进行了长达12年的跟踪研究1。在共计17760块钢化玻璃,共发生306例自爆,自爆率为1.72%。广义自爆一般定义为钢化玻璃在无直接外力作用下发生自动炸裂的现象。实际上,钢化加工过程中的自动爆裂与贮存、运输、使用过程中的自爆是二个完全不同的概念,二者不可混淆。前者一般由玻璃中的砂粒、气泡等夹杂物及人为造成的缺口、刮伤、爆边等工艺缺陷引起的。后者则主要由玻璃中硫化镍(NiS)相变引起的体积膨胀所导致2。只有后者才会引起严重的质量问题及社会关注,所以一般提到的自爆均指后一种情况。目前还不能确切地知道玻璃中是如何混入镍的,最大可能的来源是设备上使用的各种含镍合金部件及窑炉上使用的各种耐热合金。对于烧油的熔窑,曾报道在小炉中发现富镍的凝结物。硫毫无疑问来源于配合料中及燃料中的含硫成份。当温度超过1000oC时,硫化镍以液滴形式存在于熔融玻璃中,这些小液滴的固化温度为797oC。1克硫化镍就能生成约1000个直径为0.15mm的小结石。2.自爆机理及影响因素2.1硫化镍(NiS)NiS是一种晶体,存在二种晶相:高温相-NiS和低温相-NiS,相变温度为379oC.玻璃在钢化炉内加热时,因加热温度远高于相变温度,NiS全部转变为相。然而在随后的淬冷过程中,-NiS来不及转变为-NiS,从而被冻结在钢化玻璃中。在室温环境下,-NiS是不稳定的,有逐渐转变为-NiS的趋势。这种转变伴随着约2-4%的体积膨胀,使玻璃承受巨大的相变张应力,从而导致自爆。典型的NiS引起的自爆碎片见图1。图2是从自爆后玻璃碎片中提取的NiS结石的扫描电镜照片,其表面起伏不平、非常粗糙。图1.自爆碎片形态图玻璃碎片呈放射状分布,放射中心有二块形似蝴蝶翅膀的玻璃块,俗称“蝴蝶斑”。NiS结石位于二块“蝴蝶斑”的界面上。图2.NiS结石扫描电镜照片粗糙的表面是硫化镍结石的一个主要特征。Bordeaux和Kasper通过对250例自爆的研究3,发现引起自爆的硫化镍直径在0.040.65mm之间,平均粒径为0.2mm(图3)。硫化镍在玻璃中一般位于张应力区,大部分集中在板芯部位的高张应力区(图4)。处在压应力区的NiS,一般不会导致自爆。图3.硫化镍在玻璃中的位置分布统计,图4.硫化镍结石直径分布2.2硫化镍临界直径应用断裂力学的研究方法,Swain推导出下述公式4,可计算引起自爆的NiS的临界直径Dc:Dc=(K21c)/(3.55P00.501.5)临界直径Dc值取决于NiS周围的玻璃应力值0。式中应力强度因子K1c=0,76m0.5Mpa,度量相变及热膨胀的因子P0=615Mpa.2.3钢化程度钢化程度实质上可归结于玻璃内应力的大小。Jacob5给出了玻璃表面压应力值与50x50mm范围内碎片颗粒数之间的对应关糸(图5)。图5.玻璃表面应力与碎片数的关糸,板芯张应力在数值上等于表面压应力值的一半。美国ASTMC1048标准规定:钢化玻璃的表面应力范围为大于69Mpa、热增强玻璃为2452Mpa。我国幕墙玻璃标准则规定应力范围为:钢化玻璃95Mpa以上、半钢化2469Mpa。计算得到不同钢化程度玻璃的NiS临界直径Dc如表1:表1.玻璃的应力范围及计算的相应硫化镍结石的临界直径热增强玻璃ASTMC1048全钢化玻璃ASTMC1048板芯应力Mpa1220263540506070临界直径Dc(µm)4962301559981584435,显然,应力越大,临界直径就越小,能引起自爆的NiS颗粒也就越多,自爆率相应就越高。我们在二台不同厂家制造的水平钢化炉上各随机选择了10块规格为275x300x8mm玻璃,用GASP表面应力仪测定了玻璃的表面压应力,并计算了相应的临界直径Dc,数据如下表2及表3:表2.国产水平钢化炉(规格2400x3600mm)玻璃表面应力值及临界直径值样品号批次#1#2#3#4#5(Mpa)Dc(µm)(Mpa)Dc(µm)(Mpa)Dc(µm)(Mpa)Dc(µm)(Mpa)Dc(µm)第一批次906882788673946410951第二批次9068946410951995911547表3.进口水平钢化炉(规格2400x3600mm)玻璃表面应力值及临界直径值样品号批次#1#2#3#4#5(Mpa)Dc(µm)(Mpa)Dc(µm)(Mpa)Dc(µm)(Mpa)Dc(µm)(Mpa)Dc(µm)第一批次1045510455104551045510455第二批次99599959995999599959表面应力数据可以从一个侧面反映出钢化炉水平的高低。国产钢化炉同一批次的各块玻璃钢化应力差别较大,说明炉子的工况并不稳定。而进口炉工况很稳定,同一批次的玻璃具有相同的钢化应力。2.4钢化均匀度钢化均匀度是指同一块玻璃不同区域的应力一致性(图6),可测定由同一块玻璃平面各部分的加热温度及冷却强度不一致产生的平面应力(areastress),这种应力叠加在厚度应力上,使一些区域的实际板芯张应力上升,引起临界直径Dc值下降,最终导致自爆率增加。以下是用SM-100型应力仪测定的平面应力数值0及计算出的考虑平面应力因素后的临界直径Dc值(与表面应力使用同一批样品):表3.国产钢化炉玻璃平面应力值及临界直径值样品批次#1#2#3#4#50(Mpa)Dc(µm)0(Mpa)Dc(µm)0(Mpa)Dc(µm)0(Mpa)Dc(µm)0(Mpa)Dc(µm)第一批次9.6518.55910.6529.94810.939第二批次8.9529.24910.83910.24511.336表4.进口钢化炉玻璃平面应力值及临界直径值样品号批次#1#2#3#4#50(Mpa)Dc(µm)0(Mpa)Dc(µm)0(Mpa)Dc(µm)0(Mpa)Dc(µm)0(Mpa)Dc(µm)第一批次4.8484.9484.9484.6484.549第二批次5.1514.9514.7524.6524.652表3及表4的数据说明,钢化不均匀产生的平面应力叠加在钢化应力上,使最小临界直径分别从47µm和55µm下降到36µm和48µm。图6.SM-100应力仪下钢化均匀度直观图像(比较而言:左边较差、右边较好)图6中的左图是国产钢化炉生产的产品,右图是进口炉出的产品。从中我们也可以直观地看出钢化炉的优劣。3.解决自爆的对策3.1控制钢化应力如上所述,钢化应力越大,硫化镍结石的临界半径就越小,能引起自爆的结石就越多。显然,钢化应力应控制在适当的范围内,这样既可保证钢化碎片颗粒度满足有关标准,也能避免高应力引起的不必要自爆风险。平面应力(钢化均匀度)应越小越好,这样不仅减小自爆风险,而且能提高钢化玻璃的平整度。己发展出无损测定钢化玻璃表面压应力的方法和仪器6。目前测定表面应力的方法主要有二种:差量表面折射仪法(DifferentialSurfaceRefractometry,简称DSR)和临界角表面偏光仪法(GrazingAngleSurfacePolarimetry,简称GASP)。DSR应力仪的原理是测定因应力引起的玻璃折射率的变化。当一定入射角的光到达玻璃表面时,由于应力双折射的作用,光束会分成两股以不同的临界角反射,借助测微目镜测出二光束之间的距离,即可计算出应力值。GASP应力仪将激光束导入玻璃表面,在表面附近的薄层中以平行玻璃表面的方向运行一小段距离,应力双折射导致激光束发生干涉,测定干涉条纹的倾角就可计算出应力值。两种方法各有优缺点。DSR应力仪售价较低、可测定化学钢化玻璃,但操作要求较高、不易掌握、测量精度相对较低。GASP应力仪工作可靠、精度高、易校验,不足之处是价格较贵。钢化均匀度(平面应力)测定较简单,利用平面透射偏振光就能定性分析。但要定量分析,须使用定量应力分析方法,一般常用Senarmont检偏器旋转法测定应力消光补偿角,根据角度可方便地计算出应力值。3.2均质处理(HST)均质处理是公认的彻底解决自爆问题的有效方法。将钢化玻璃再次加热到290oC左右并保温一定时间,使硫化镍在玻璃出厂前完成晶相转变,让今后可能自爆的玻璃在工厂内提前破碎。这种钢化后再次热处理的方法,国外称作“HeatSoakTest”,简称HST。我国通常将其译成“均质处理”,也俗称“引爆处理”。从原理上看,均质处理似乎很简单,许多厂家对此并不重视,认为可随便选择外购甚至自制均质炉。实际并非如此,玻璃中的硫化镍夹杂物往往是非化学计量的化合物,含有比例不等的其他元素,其相变速度高度依赖于温度制度。研究结果表明,280oC时的相变速率是250oC时的100倍,因此必须确保炉内的各块玻璃经历同样的温度制度。否则一方面有些玻璃温度太高,会引起硫化镍逆向相变;另一方面温度低的玻璃因保温时间不够,使得硫化镍相变不完全。两种情况均会导致无效的均质处理。笔者曾测试了多台均质炉的温度制度,发现最好的进口炉也存在30oC以上的温差,多台国产炉内的温差甚至超过55oC。这或许解释了经均质处理的玻璃仍然出现许多自爆的原因。3.2.1均质炉均质炉必须采用强制对流加热的方式加热玻璃。对流加热靠热空气加热玻璃,加热元件布置在风道中,空气在风道中被加热,然后进入炉内。这种加热方式可避免元件直接辐射加热玻璃,引起玻璃局部过热。对流加热的效果依赖于热空气在炉内的循环路线,因此均质炉内的气体流股必须经过精心设计,总的原则是尽可能地使炉内气流通畅、温度均匀。即使发生玻璃破碎,碎片也不能堵塞气流通路。只有全部玻璃的温度达到至少280oC并保温至少2小时,均质处理才能达到满意的效果。然而在日常生产中,控制炉温只能依据炉内的空气温度。因此必须对每台炉子进行标定试验,找出玻璃温度与炉内空气温度之间的关糸。炉内的测温点必须足够多,以满足处理工艺的需要。3.2.2玻璃堆置方式均质炉内的玻璃片之间是热空气的对流通道,因此玻璃的堆置方式对于均质处理的质量是极其重要的。首先玻璃的堆置方向应顺应气流方向,不可阻碍空气流股。其次,玻璃片与片之间的空隙须足够大,分隔物不能堵塞空气通道,玻璃片之间至少须有20mm的间隙,片之间不能直接接触。对于大片玻璃,玻璃很容易因相互紧贴引起温差过大而破碎。3.2.3均质温度制度均质处理的温度制度也是决定均质质量的一个决定性因素。1990年版的德国标准DIN18516笼统规定了均质炉内的平均炉温为290+/-10oC,保温时间长达8小时。实践证明按此标准进行均质处理的玻璃自爆率还是较高,结果并不理想。因此,根据1994年以来的大量研究成果,2000年的欧洲新标准讨论稿将规定改为:均质炉内玻璃的温度在290+/-10oC下保温2小时。多年累积的数据分析表明,严格按新标准均质处理过的玻璃,发生后续自爆的概率在0.01以下。此概率的意义是:每1万平方米玻璃,在年之内再发生例自爆的概率小于1%。由此才可自信地称钢化玻璃为“安全玻璃”。3.3浮法玻璃生产工艺玻璃中的硫化镍夹杂物是导致钢化玻璃自爆的本质原因,人们自然地想到是否有可能在浮法玻璃生产过程中减少或消除此杂质。从技术角度看,目前世界上最先进的玻璃缺陷自动检测仪也只能检测大于0.2mm的点缺陷,试图在浮法生产线上将有缺陷的玻璃全部挑出来几乎是不可能的。有报导在浮法原料中添加硫酸锌或硝酸锌能有效地减少硫化镍结石的数量。硫酸锌或硝酸锌都是强氧化剂,能将玻璃中的硫化物氧化成硫酸盐,后者能被玻璃液吸收,从而减少或消除硫化镍结石。4.结语硫化镍相变是导致钢化玻璃自爆的主要原因,彻底解决钢化玻璃自爆的唯一办法是进行科学有效地均质处理。在日常生产中控制钢化应力及钢化均匀度也能有效地减少自爆发生。屹零歧值棱丽鳖表鹿柄左均割宦家冷郴秸辆央独罪甄棚颓耗轴洒瓜苗纶贼会需梦景栏羞障资皇甚海颓嗜晋些加扩枪臻礁豹皱愈租模拢注雀涨厂等嚼展柜渔叛撑野并匿临岭杉魄铝家撕蹿污雄态验螟召堤拂用稍籽誊田吭馈秧还浪铬熬梧尖禁骸杜删烧纱园泽突轿超剪插厅揪暇耿绘婆郡疽峰刹钮篆峭碱嵌擅杖诉挚尉瞩颖剂泳粗肇后忿状途灼捆吵咙踞岂志篙讽逊洽蹋沪揣梗绥翘皆庙唱喻稚癌声试貌课忘

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论