MATLAB在测量误差分析中的应用.doc_第1页
MATLAB在测量误差分析中的应用.doc_第2页
MATLAB在测量误差分析中的应用.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

MATLAB在测量误差分析中的应用在技术测量中,按照误差的特点与性质,误差可分为:系统误差,粗大误差和随机误差。在假定不含有系统误差的情况下,可借助MATLAB对测量数据进行处理,使处理过程快速、结果可靠。处理测量数据的处理过程如下:(1)按测量的先后顺序记录下个测量值;(2)计算算术平均值;(3)计算残余误差;(4)校核算术平均值及残余误差;(5)判断是否有粗大误差,若有,剔除;(6)计算单次测量的标准差;(7)计算算术平均值的标准差:(8)计算算术平均值的极限误差;(9)列出测量结果。误差处理时常用的MATLAB函数序号函数名调用格式作用1absB=abs(a)求绝对值2sqrtB=sqrt(a)对向量中的值依次开平方3meanb=mean(a)求平均值4stdb=std(a)求标准差5cova=cov(x,y)求协方差6normrndW=normrnd(, ,)生成正态分布的向量7normstatE,D=(mu,sigma)计算正态分布的期望与方差8normfitmuhat,sigmut,muci,sigmaci= normfit(X,Alpha)已知数据符合正态分布,对参数进行点估计和区间估计其算法流程图如下:开 始输入数据计算平均值计算残余误差计算单次测量标准差判断是否含粗大误差计算算术平均值标准差S写出计算结果否剔除含粗大误差的数据例:现对某被测量进行20次测量,得到测量序列x,其中第1个数为粗大误差,需运用莱以特准则将其剔除,再对数据进行分析计算,具体程序如下:close allclearclcx= 28.0057 24.9974 24.9962 24.9970 24.9852 24.9977 25.0012 25.0031 25.0144 24.9965 25.0062 25.0080 25.0094 24.9901 25.0021 25.0024 24.9899 24.9926 25.0108 24.9987; % 含有粗大误差的测量值序列aver=mean(x) % 求该序列的平均值v=x-aver; %测量值的剩余误差 s=std(x) %测量值的标准差n=length (x); %剔除粗大误差for i=1:n if (abs(x(i)-aver)-3*s) 0 fprintf(n) fprintf(%: ,x(i) x(i)=0; else continue end endx1=x(x=0) %剔除粗大误差的新测量值序列n1=length(x1);aver1=mean(x1) ; %新序列的平均值h1=std(x1);aver1 %测量值的最佳近似值s1=h1/sqrt(n1) %算术平均值的标准差运行结果:aver = 25.1502s = 0.6721x1 = 24.9974 24.9962 24.9970 24.9852 24.9977 25.0012 25.0031 25.0144 4.9965 25.0062 25.0080 25.0094 24.9901 25.0021 25.0024 24.9899 24.9926 25.0108 24.9987 %新序列aver1 = 2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论