




已阅读5页,还剩32页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
生统总结范文 u检验、t检验、F检验、X2检验(转)作者李冠炜?常用显著性检验1.t检验适用于计量资料、正态分布、方差具有齐性的两组间小样本比较。 包括配对资料间、样本与均数间、两样本均数间比较三种,三者的计算公式不能混淆。 2.t检验应用条件与t检验大致相同,但t检验用于两组间方差不齐时,t检验的计算公式实际上是方差不齐时t检验的校正公式。 3.U检验应用条件与t检验基本一致,只是当大样本时用U检验,而小样本时则用t检验,t检验可以代替U检验。 4.方差分析用于正态分布、方差齐性的多组间计量比较。 常见的有单因素分组的多样本均数比较及双因素分组的多个样本均数的比较,方差分析首先是比较各组间总的差异,如总差异有显著性,再进行组间的两两比较,组间比较用q检验或LST检验等。 5.X2检验是计数资料主要的显著性检验方法。 用于两个或多个百分比(率)的比较。 常见以下几种情况四格表资料、配对资料、多于2行*2列资料及组内分组X2检验。 6.零反应检验用于计数资料。 是当实验组或对照组中出现概率为0或100时,X2检验的一种特殊形式。 属于直接概率计算法。 7.符号检验、秩和检验和Ridit检验三者均属非参数统计方法,共同特点是简便、快捷、实用。 可用于各种非正态分布的资料、分布资料及半定量资料的分析。 其主要缺点是容易丢失数据中包含的信息。 所以凡是正态分布或可通过数据转换成正态分布者尽量不用这些方法。 8.Hotelling检验用于计量资料、正态分布、两组间多项指标的综合差异显著性检验。 计量经济学检验方法讨论计量经济学中的检验方法多种多样,而且在不同的假设前提之下,使用的检验统计量不同,在这里我论述几种比较常见的方法。 在讨论不同的检验之前,我们必须知道为什么要检验,到底检验什么?如果这个问题都不知道,那么我觉得我们很荒谬或者说是很模式化。 检验的含义是要确实因果关系,计量经济学的核心是要说因果关系是怎么样的。 那么如果两个东西之间没有什么因果联系,那么我们寻找的原因就不对。 那么这样的结果是没有什么意义的,或者说是意义不大的。 那么检验对于我们确认结果非常的重要,也是评价我们的结果是否拥有价值的关键因素。 所以要做统计检验。 t检验,t检验主要是检验单个ols估计值或者说是参数估计值的显著性,什么是显著性?也就是给定一个容忍程度,一个我们可以犯错误的限度,错误分为两类 1、本来是错的但是我们认为是对的。 2、本来是对的我们认为是错的。 统计的检验主要是针对第一种错误而言的。 一般的计量经济学中的这个容忍程度是5%,也就是说可以容忍我们范第一类错误的概率是5%。 这样说不准确,但是比较好理解。 t-stastic是类似标准正态化的正态分布两一样,也就是估计值减去假设值除以估计值得标准差,一般假设值是0,这一点不难理解,如果是0,那么也就意味着没有因果关系。 这个t-static在经典假设之下服从t分布。 t分布一般是和正态分布差不多,尤其是当样本的量足够大的时候,一般的经验认为在样本数量大于120的时候,就可以看成是正态分布的。 F-statistc F检验是属于联合检验比较重要的一种,主要的目的是用于对于一系列的原因的是否会产生结果这样一个命题做出的检验。 F统计量主要的产生是SSRSSTSSE三个量。 但是这个检验有一个缺点是必须在经典假设之下才能有效。 LM检验这个检验的性质和F检验的性质是一样的,都是检验联合显著性的,不同的是F统计量符合F分布,但是LM统计量服从卡方分布。 卡方分布是正态分布的变量的平方和,而F分布是卡方分布的商,并且分子和分布必须独立,这就是为什么F检验适用范围受限的原因。 LM=n*SSR、或者是LM=n-SSR。 至于其他的White检验、Brusch-pagan检验(异方差的检验方法)、还有序列相关的t检验、DW检验基本原来是相同的。 关于异方差检验、序列相关的检验其中存在不同的地方,但是思想基本是相同的。 关于异方差检验的讨论 1、Brusch-pagan检验这个检验的思路比较简单,主要是要研究残查和X之间的关系,给定这样的一个方程u=b0+b1*x1+bn*xn+u的回归,其中进行F检验和LM检验。 如果检验通过那么不存在异方差,如果不通过那么存在异方差。 2、White检验这个检验也是对异方差的检验,但是这个检验不同的是不仅对于X的一次方进行回归,而且考虑到残查和x的平方还有Xi*Xj之间的关系。 给定如下方程u=b0+b1*y+b2*y2+u。 也是用F和LM联合检验来检验显著性。 如果通过那么不存在异方差,否则存在。 序列相关的检验方法的讨论对于时间序列的问需要知道一个东西,也就是一介自回归过程,也就是一般在教科书中说到的AR (1)过程,其中的道理主要是说在当期的变量主要是取决于过去一个时期的变量和一个随机误差项。 表示如下Ut=p*U(t-1)+et。 在这里我要说到几个概念问题,I (1)(一阶积整)、I (0)(零阶积整)。 其中的一介自回归过程AR (1)就属于零阶积整过程,而一阶积整过程实际上是随机游动和飘移的随机游动过程。 随机游动过程Ut=U(t-1)+et。 也就是在AR (1)的过程之下,其中的P是等于1的。 飘移的随机游动过程Ut=a+U(t-1)+et。 其中随机游动过程和AR (1)过程中的不同点在于一个弱相依性的强弱问题,实际上我们在时间序列问题中,我们可以认为任何一个过程是弱相依的,但是问题的关键是我们不知道到底有多弱?或者更加直观地说,我们想知道P到底是多大,如果P是0.9或者是一个比较接近于1得数,那么可能我们可以认为这个时间序列有高度持久性,这个概念表示当期的变量却绝于一个很早的时期的变量,比如一阶积整过程,实际上et是一个独立统分布的变量,而且条件数学期望等于0,没有异方差性。 那么实际上这个序列的数学期望是和期数没有什么关系的。 那么也就意味着从第0期开始,U的数学期望值就是和很久以后的U的数学期望值一样的。 但是方差就不同了,方差随着时间的增加不断扩大。 我们知道了,这种不同的概念就可以讨论在一阶自回归的条件之下的检验问题,但是我们说一介自回归的过程是参差序列的特征而已,其他的变量的特征问题我们不谈。 在讨论检验的问题以前,我有必要交待一下时间序列在ols估计的时候我们应该注意什么。 实际上解决序列自相关问题最主要的问题就是一个差分的方法。 因为如果是长期持久的序列或者是不是长期持久的序列,那么一定的差分就可以解除这种问题。 1、t检验。 如果我们知道这个变量是一个一介自回归的过程,如果我们知道自回归过程是AR (1)的。 那么我们就可以这样作,首先我们做OLS估计,得到的参差序列我们认为是一阶自相关的。 那么为了验证这种情况,那么我们可以做Ut和U(t-1)的回归,当然这里可以包含一个截距项。 那么我们验证其中的参数的估计是不是显著的,就用t检验。 t检验与F检验有什么区别1.检验有单样本t检验,配对t检验和两样本t检验。 单样本t检验是用样本均数代表的总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。 配对t检验是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。 F检验又叫方差齐性检验。 在两样本t检验中要用到F检验。 从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。 若两总体方差相等,则直接用t检验,若不等,可采用t检验或变量变换或秩和检验等方法。 其中要判断两总体方差是否相等,就可以用F检验。 2.t检验和方差分析的前提条件及应用误区用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。 后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子。 无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的。 若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。 之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。 值得注意的是,方差分析与成组设计t检验的前提条件是相同的,即正态性和方差齐性。 t检验是目前医学研究中使用频率最高,医学论文中最常见到的处理定量资料的假设检验方法。 t检验得到如此广泛的应用,究其原因,不外乎以下几点现有的医学期刊多在统计学方面作出了要求,研究结论需要统计学支持;传统的医学统计教学都把t检验作为假设检验的入门方法进行介绍,使之成为广大医学研究人员最熟悉的方法;t检验方法简单,其结果便于解释。 简单、熟悉加上外界的要求,促成了t检验的流行。 但是,由于某些人对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性。 将这些问题归类,可大致概括为以下两种情况不考虑t检验的应用前提,对两组的比较一律用t检验;将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较。 以上两种情况,均不同程度地增加了得出错误结论的风险。 而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小。 u检验和t检验区别与联系u检验和t检验可用于样本均数与总体均数的比较以及两样本均数的比较。 理论上要求样本正态分布总体。 但在实用时,只要样本例数n较大,或n小但总体标准差已知时,就可应用u检验;n小且总体标准差时,可应用t检验,但要求样本正态分布总体。 两样本均数比较时还要求两总体方差相等。 一、样本均数与总体均数比较比较的目的是推断样本所代表的总体均数与已知总体均数0有无差别。 通常把理论值、标准值或经大量调查所得的稳定值作为0.根据样本例数n大小和总体标准差是否已知选用u检验或t检验。 (一)u检验用于已知或但n足够大用样本标准差s作为的估计值,代入式(19.6)时。 以算得的统计量u,按表19-3所示关系作判断。 表19-3u值、P值与统计结论t值P值0.05双侧单侧0.05双侧单侧0.01双侧单侧例19.3根据大量调查,已知健康成年男子脉搏均数为72次/分,标准差为6.0次/分。 某医生在山区随机抽查25名健康成年男子,求得其脉搏均数为74.2次/分,能否据此认为山区成年男子的脉搏高于一般?统计结论1.961.6450.051.961.6450.052.582.330.01拒绝H0,接受H1,差别有高度统计学意义不拒绝H0,差别无统计学意义拒绝H0,接受H1,差别有统计学意义据题意,可把大量调查所得的均数72次/分与标准差6.0次/分看作为总体均数0和总体标准差,样本均数x为74.2次/分,样本例数n为25.H0=0H10=0.05(单侧检验)算得的统计量u=1.8331.645,P0.05,按=0.05检验水准拒绝H0,可认为该山区健康成年男子的脉搏高于一般。 (二)t检验用于且n较小时。 以算得的统计量t,按表19-4所示关系作判断。 表19-4t值、P值与统计结论0.05t0.05(v)0.050.05t0.05(v)0.050.01t0.01(v)0.01拒绝H0,接受H1,差别有高度统计学意义例19.4若例19.3中总体标准差,但样本标准差已求出,s=6.5次/分,余数据同例19.3.t值P值统计结论不拒绝H0,差别无统计学意义拒绝H0,接受H1,差别有统计学意义据题意,与例19.3不同之处在于,可用t检验。 H0=0H10=0.05(单侧检验)本例自由度v=25-1=24,查t界值表(单侧)(附表19-1)得t0.05 (24)=1.711.算得的统计量t=1.6921.711,P0.05,按=0.05检验水准不拒绝H0,尚不能认为该山区成年男子的脉搏高于一般。 二、配对资料的比较在医学研究中,常用配对设计。 配对设计主要有四种情况同一受试对象处理前后的数据;同一受试对象两个部位的数据;同一样品用两种方法(仪器等)检验的结果;配对的两个受试对象分别接受两种处理后的数据。 情况的目的是推断其处理有无作用;情况、的目的是推断两种处理(方法等)的结果有无差别。 公式(19.8)式中,0为差数年总体均数,因为假设处理前后或两法无差别,则其差数的均数应为0,d为一组成对数据之差d(简称差数)的均数,其计算公式同式(18.1);Sd为差数均数的标准误,sd为差数年的标准差,计算公式同式(18.3);n为对子数。 因计算的统计量是t,按表19-4所示关系作判断。 例19.5应用某药治疗9例高血压病人,治疗前后舒张压如表19-5,试问用药前后舒张压有无变化?表19-5高血压病人用某药治疗前后的舒张压(kPa)病人编号123456789合计治疗前12.813.114.914.413.613.113.314.113.3治疗后11.713.114.413.613.113.312.813.612.3差数d1.00.00.50.80.5-0.20.50.51.04.7D21.210.000.250.640.250.040.250.251.003.89H0该药治疗前后的舒张压无变化,即d=0H1该药治疗前后的舒张压有变化,即d0=0.05自由度v=n-1=8,查t界值表得t0.05 (8)=2.306,t0.01 (8)=3.355,本例t=3.714t0.01 (8),P0.01,按=0.05检验水准拒绝H0,接受H1,可认为治疗前后舒张压有变化,即该药有降压作用。 三、完全随机设计的两样本均数的比较亦称成组比较。 目的是推断两样本各自代表的总体均数1与2是否相等。 根据样本含量n的大小,分u检验与t检验。 (一)u检验可用于两样本含量n 1、n 2、均足够大时,如均大于50或100.公式(19.9)算得的统计量为u值,按表19-3所示关系作出判断。 例19.6某地抽样调查了部分健康成人红细胞数,其中男性360人,均数为4.6601012/L,标准差为0.5751012/L;女性255人,均数为4.1781012/L,标准差为0.2911012/L,试问该地男、女红细胞数的均数有无差别?H0=0H10=0.05今x1=4.6601012/L,s1=0.5751012/L,n1=360;x2=4.1781012/L,s2=0.2911012/L,n2=255.算得的u=13.632.58,P0.01,按=0.05检验水准拒绝H0,接受H1,可认为该地男女红细胞数的均数不同,男性高于女性。 (二)t检验可用于两样本含量n 1、n2较小时,且要求两总体方差相等,即方差齐(homoscedasticity)。 若被检验的两样本方差相差较大且差别有统计学意义则需用t检验。 公式(19.10)公式(19.11)公式(19.12)式中sx1x2,为两样本均数之差的标准误,s2c为合并估计方差(bined estimatevariance)。 算得的统计量为t,按表19-4所示关系作出判断。 例19.7某医生统广西瑶族和侗族正常妇女骨盆X线测量资料各50例。 骨盆入口前后径瑶族的均数为12.002(cm),标准差0.948(cm),侗族相应的为11.456(cm)和1.215(cm)。 问两族妇女的骨盆入口前后径是否有差别?H01=2H112=0.05已知n1=n2=50,x1=12.002(cm),s1=0.948(cm);x2=11.456(cm),s2=1.215(cm)。 本例自由度v=n1+n2-2=98,查t界值表表内自由度一栏无98,可用内插法(从略)或用v=100估计.T0.05 (100)=1948,t0.01 (100)=2.626,今t=2.505t0.05(1000,P0.05,按=0.05检验水准拒绝H0,接受H1,可认为广西瑶族和侗族妇女骨盆入口前后径不同,前者大于后者。 四、完全随机设计的两样本几何均数比较医学上有些资料为等比资料或正态分布资料,宜用几何均数表示其平均水平。 比较两样本几何均数的目的是推断它们分别代表的总体几何均数是否相等。 此种情况下,应先把原始数据X进行对数变换,用变换后的数据代入式(19.10)、(19.11)、(19.12)计算t值。 例19.8将20名钩端螺旋体病人的血清随机分为两组,分别用标准株或水生株作凝溶试验,测得稀释倍数如下,问两组的平均效价有无差别?X1标准株(11人)100,200,400,400,400,400,800,1600,1600,1600,3200X2水生珠(9人)100,100,100,200,200,200,200,400,400H01=2H112=0.05将两组数据分别取对数,以对数作为新变量X1和X2.X12.000,2.301,2.602,2.602,2.602,2.602,2.903,3.204,3.204,3.204,3.505X22.000,2.000,2.000,2.301,2.301,2.301,2.301,2.602,2.602用变换后的数据计算x1,s12;x2,s22再代入式(19.10)、(19.11)、(19.12)计算t值。 x1=2.794,s12=0.2043;x2=2.268,s22=0.0554自由度v=11+9-2=18,查t界值表得t0.01 (18)=2.878,今t=3.1502.878,P0.01,按=0.05检验水准拒绝H0,接受H1,可认为两组平均效价不同,标准株高于水生株。 方差分析与两样本T检验区别hi.baidu./blog/item/54edcd02c2f4ea23b1351dda.html方差分析与两样本T检验。 1。 首先可以看到方差分析(ANOVA)包含两样本T检验,把两样本T检验作为自己的特例。 因为ANOVA可以比较多个总体的均值,当然包含两个总体作为特例。 实际上,T的平方就是F统计量(m个自由度的T分布之平方恰为自由度为(1,m)的F分布。 因此,这时候二者检验效果完全相同。 T检验和ANOVA检验对于所要求的条件也相同1)各个组的样本数据内部要相互独立,2)各组皆要正态分布3)各总体的方差相等。 上述这3个条件完全相同。 2。 如果说要指出差别,则区别仅在下列一点上用ANOVA检验两总体均值相等性时,只限于这样的双侧检验问题,即H0mu1=MU2Ha:mu1not=mu2而两样本的T检验则可以比上述情况更广泛,对立假设可以是下面3种中的任何一种.Ha:mu1mu2Ha:mu1 t检验1.单因素设计的小样本(n50)计量资料2.样本正态分布总体3.总体标准差4.两样本均数比较时,要求两样本相应的总体方差相等?根据研究设计t检验可由三种形式单个样本的t检验这样说来,两样本均值相等性检验虽然可以用ANOVA做,但这没有任何好处,反而使得对立假设受到限制,因而还是T检验更好。 其他表述t检验与方差分析,主要差异在于,t检验一般使用在单样本或双样本的检验,方差分析用于2个样本以上的总体均值的检验.同样,双样本也可以使用方差分析,多样本也可以使用t检验,不过,t检验只能是所有总体两两检验而已.两种方法与样本量没有直接关系,而是与数据的分布有关系,如果数据是正态分布的,那不管是小样本或大样本,利用莱维-林德伯格中心极限定理的原理,都是可以用的,如果数据非正态分布,那只能使用大样本利用李雅普诺夫中心极限定理的原理进行2t检验,此时不能利用方差分析,因为方差分析三个条件之一就是正态分布.配对样本均数t检验(非独立两样本均数t检验)两个独立样本均数t检验 (1)单个样本t检验?又称单样本均数t检验(one samplet test),适用于样本均数与已知总体均数0的比较,其比较目的是检验样本均数所代表的总体均数是否与已知总体均数0有差别。 ?已知总体均数0一般为标准值、理论值或经大量观察得到的较稳定的指标值。 ?单样t检验的应用条件是总体标准s的小样本资料(如n50),且服从正态分布。 (2)配对样本均数t检验?配对样本均数t检验简称配对t检验(paired t test),又称非独立两样本均数t检验,适用于配对设计计量资料均数的比较,其比较目的是检验两相关样本均数所代表的总体均数是否有差别。 ?配对设计(paired design)是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。 ?应用配对设计可以减少实验的误差和控制非处理因素,提高统计处理的效率。 ?配对设计处理分配方式主要有三种情况两个同质受试对象分别接受两种处理,如把同窝、同性别和体重相近的动物配成一对,或把同性别和年龄相近的相同病情病人配成一对;同一受试对象或同一标本的两个部分,随机分配接受两种不同处理,如例5.2资料;自身对比(self-contrast)。 即将同一受试对象处理(实验或治疗)前后的结果进行比较,如对高血压患者治疗前后、运动员体育运动前后的某一生理指标进行比较。 (3)两独立样本t检验两独立样本t检验(two independentsamples t-test),又称成组t检验。 ?适用于完全随机设计的两样本均数的比较,其目的是检验两样本所总体的均数是否相等。 ?完全随机设计是将受试对象随机地分配到两组中,每组对象分别接受不同的处理,分析比较处理的效应。 或分别从不同总体中随机抽样进行研究。 ?两独立样本t检验要求两样本所代表的总体服从正态分布N(1,1总体方差12)和N(2,22),且两 2、22相等,即方差齐性(homogeneity ofvariance,homoscedasticity)。 ?若两总体方差不等,即方差不齐,可采用t检验,或进行变量变换,或用秩和检验方法处理。 t检验中的注意事项1.假设检验结论正确的前提作假设检验用的样本资料,必须能代表相应的总体,同时各对比组具有良好的组间均衡性,才能得出有意义的统计结论和有价值的专业结论。 这要求有严密的实验设计和抽样设计,如样本是从同质总体中抽取的一个随机样本,试验单位在干预前随机分组,有足够的样本量等。 2.检验方法的选用及其适用条件,应根据分析目的、研究设计、资料类型、样本量大小等选用适当的检验方法。 t检验是以正态分布为基础的,资料的正态性可用正态性检验方法检验予以判断。 若资料为非正态分布,可采用数据变换的方法,尝试将资料变换成正态分布资料后进行分析。 3.双侧检验与单侧检验的选择需根据研究目的和专业知识予以选择。 单侧检验和双侧检验中的t值计算过程相同,只是t界值不同,对同一资料作单侧检验更容易获得显著的结果。 单双侧检验的选择,应在统计分析工作开始之前就决定,若缺乏这方面的依据,一般应选用双侧检验。 4.假设检验的结论不能绝对化假设检验统计结论的正确性是以概率作保证的,作统计结论时不能绝对化。 在报告结论时,最好列出概率P的确切数值或给出P值的范围,如写成0.02 当P接近临界值时,下结论应慎重。 5正确理解P值的统计意义P是指在无效假设H0的总体中进行随机抽样,所观察到的等于或大于现有统计量值的概率。 其推断的基础是小概率事件的原理,即概率很小的事件在一次抽样研究中几乎是不可能发生的,如发生则拒绝H0。 因此,只能说明统计学意义的“显著”。 6假设检验和可信区间的关系假设检验用以推断总体均数间是否相同,而可信区间则用于估计总体均数所在的范围,两者既有联系又有区别。 T检验属于均值分析,它是用来检验两类母体均值是否相等。 均值分析是来考察不同样本之间是否存在差异,而方差分析则是评估不同样本之间的差异是否由某个因素起主要作用。 T检验及其与方差分析的区别假设检验是通过两组或多组的样本统计量的差别或样本统计量与总体参数的差异来推断他们相应的总体参数是否相同。 t检验1.单因素设计的小样本(n50)计量资料2.样本正态分布总体3.总体标准差4.两样本均数比较时,要求两样本相应的总体方差相等?根据研究设计t检验可由三种形式单个样本的t检验配对样本均数t检验(非独立两样本均数t检验)两个独立样本均数t检验 (1)单个样本t检验?又称单样本均数t检验(one samplettest),适用于样本均数与已知总体均数0的比较,其比较目的是检验样本均数所代表的总体均数是否与已知总体均数0有差别。 ?已知总体均数0一般为标准值、理论值或经大量观察得到的较稳定的指标值。 ?单样t检验的应用条件是总体标准s的小样本资料(如n50),且服从正态分布。 (2)配对样本均数t检验?配对样本均数t检验简称配对t检验(paired ttest),又称非独立两样本均数t检验,适用于配对设计计量资料均数的比较,其比较目的是检验两相关样本均数所代表的总体均数是否有差别。 ?配对设计(paired design)是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。 ?应用配对设计可以减少实验的误差和控制非处理因素,提高统计处理的效率。 ?配对设计处理分配方式主要有三种情况两个同质受试对象分别接受两种处理,如把同窝、同性别和体重相近的动物配成一对,或把同性别和年龄相近的相同病情病人配成一对;同一受试对象或同一标本的两个部分,随机分配接受两种不同处理,如例5.2资料;自身对比(self-contrast)。 即将同一受试对象处理(实验或治疗)前后的结果进行比较,如对高血压患者治疗前后、运动员体育运动前后的某一生理指标进行比较。 (3)两独立样本t检验两独立样本t检验(two independentsamples t-test),又称成组t检验。 ?适用于完全随机设计的两样本均数的比较,其目的是检验两样本所总体的均数是否相等。 ?完全随机设计是将受试对象随机地分配到两组中,每组对象分别接受不同的处理,分析比较处理的效应。 或分别从不同总体中随机抽样进行研究。 ?两独立样本t检验要求两样本所代表的总体服从正态分布N(1,1总体方差12)和N(2,22),且两 2、22相等,即方差齐性(homogeneity ofvariance,homoscedasticity)。 ?若两总体方差不等,即方差不齐,可采用t检验,或进行变量变换,或用秩和检验方法处理。 t检验中的注意事项1.假设检验结论正确的前提作假设检验用的样本资料,必须能代表相应的总体,同时各对比组具有良好的组间均衡性,才能得出有意义的统计结论和有价值的专业结论。 这要求有严密的实验设计和抽样设计,如样本是从同质总体中抽取的一个随机样本,试验单位在干预前随机分组,有足够的样本量等。 2.检验方法的选用及其适用条件,应根据分析目的、研究设计、资料类型、样本量大小等选用适当的检验方法。 t检验是以正态分布为基础的,资料的正态性可用正态性检验方法检验予以判断。 若资料为非正态分布,可采用数据变换的方法,尝试将资料变换成正态分布资料后进行分析。 3.双侧检验与单侧检验的选择需根据研究目的和专业知识予以选择。 单侧检验和双侧检验中的t值计算过程相同,只是t界值不同,对同一资料作单侧检验更容易获得显著的结果。 单双侧检验的选择,应在统计分析工作开始之前就决定,若缺乏这方面的依据,一般应选用双侧检验。 4.假设检验的结论不能绝对化假设检验统计结论的正确性是以概率作保证的,作统计结论时不能绝对化。 在报告结论时,最好列出概率P的确切数值或给出P值的范围,如写成0.02 当P接近临界值时,下结论应慎重。 5正确理解P值的统计意义P是指在无效假设H0的总体中进行随机抽样,所观察到的等于或大于现有统计量值的概率。 其推断的基础是小概率事件的原理,即概率很小的事件在一次抽样研究中几乎是不可能发生的,如发生则拒绝H0。 因此,只能说明统计学意义的“显著”。 6假设检验和可信区间的关系假设检验用以推断总体均数间是否相同,而可信区间则用于估计总体均数所在的范围,两者既有联系又有区别。 T检验属于均值分析,它是用来检验两类母体均值是否相等。 均值分析是来考察不同样本之间是否存在差异,而方差分析则是评估不同样本之间的差异是否由某个因素起主要作用。 t检验是假设检验的一种常用方法,当方差时,可以用来检验一个正态总体或两个正态总体的均值检验假设问题,也可以用来检验成对数据的均值假设问题。 具体内容可以参考概率论与数理统计。 可以用来判断两组数倨差异是否有显著意义,也就是结果有没有统计学意义。 方差分析它是处理实验研究资料时重要的分析方法之一,代表数据是否具有统计意义,一般一组数据代表某个条件或因素,方差分析可以判断你选取的这个因素是否有意义,是不是影响因素如果你做统计为了找到事物相关性,而方差结果显示数据无统计学差异,很可能代表实验失败或设计有问题在对均值进行假设检验时,一般有两种参数检验方法,即t检验与方差分析。 t检验仅用在单因素两水平设计(包括配对设计和成组设计)和单组设计(给出一组数据和一个标准值的资料)的定量资料的均值检验场合;而方差分析用在单因素k水平设计(k3)和多因素设计的定量资料的均值检验场合。 应当进一步说明的是,方差分析有十几种,不同的方差分析取决于不同的设计类型。 很多人习惯于用t检验取代一切方差分析。 不能用t检验取代方差分析的情况单因素k(k3)水平设计时的情形。 为了便于理解,举例说明。 实例研究单味中药对小鼠细胞免疫机能的影响,把40只小鼠随机均分为4组,每组10只,雌雄各半,用药15d后测定E-玫瑰结成率(%),结果如下,试比较各组总体均值之间的差别有无显著性意义?对照组1410121613141210139党参组21241817221918232018黄芪组24202218172118221923淫羊藿组35272329314035302836处理本例资料,通常人们错误的做法是,重复运用成组设计资料的t检验对4个组的均值进行6次两两比较;而正确的做法是,先进行单因素4水平设计资料的方差分析,若4个总体均值之间的差别有显著性意义,再用q检验等方法进行多个均值之间的两两比较。 下面将从多个方面来说明上述两种分析方法之间的差异(表1)。 表1用t检验与方差分析处理实例资料的区别比较的内容资料的利用率对原实验设计的影响犯假阳性错误的概率结论的可靠性t检验低每次仅用两组残割裂了整体设计大1-(1-0.05)6=0.265低统计量的自由度小(=18)方差分析加q检验高每次要用全部数据全与原实验设计相呼应小0.05(假定=0.05)高统计量的自由度大(=36)注自由度大,所对应的统计量的可靠性就高,它相当于“权重”,也类似于产生“代表”的基数,基数越大,所选出的“代表”就越具有权威性。 多因素设计时的情形。 为了便于理解,仍举例说明(表2)。 表2注射氯化锂或烟碱后不同时间大鼠体温的下降值使用氯化锂与否使用烟碱与否第二次注射后不同时间体温下降值(摄氏度)0.71.535-0.00.40.20.50.10.40.30.5+-0.70.50.10.50.10.60.20.5-+1.20.80.10.60.40.50.40.3+1.70.60.70.60.30.60.10.5显然,表2中涉及到的3个实验因素(即”使用氯化锂与否”、“使用烟碱与否”、“药物在体内作用时间”)。 这些因素之间一般都存在不同程度的交互作用,应当选用与设计类型(本例为具有一个重复测量的三因素设计)相对应的方差分析方法。 然而,对于处置复杂的实验设计问题,人们常犯的错误是在;其一,将多因素各水平的不同组合(本例中共有16种不同的组合,相当于16种不同的实验条件)、简单地看作单因素的多个水平(即视为单因素16水平),混淆了因素与水平之间的区别,从而错误地确定了实验设计类型;其二,分析资料时,常错误用单因素多水平设计或仍采用多次t检验进行两两比较。 误用这两种方法的后果是,不仅无法分析因素之间的交互作用的大小,而且,由于所选用的数学模型与设计不匹配,易得出错误的结论。 答t检验适用于两个变量均数间的差异检验,多于两个变量间的均数比较要用方差分析。 用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。 后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子。 无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的。 若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。 之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。 值得注意的是,方差分析与成组设计t检验的前提条件是相同的,即正态性和方差齐性。 t检验是目前医学研究中使用频率最高,医学论文中最常见到的处理定量资料的假设检验方法。 t检验得到如此广泛的应用,究其原因,不外乎以下几点现有的医学期刊多在统计学方面作出了要求,研究结论需要统计学支持;传统的医学统计教学都把t检验作为假设检验的入门方法进行介绍,使之成为广大医学研究人员最熟悉的方法;t检验方法简单,其结果便于解释。 简单、熟悉加上外界的要求,促成了t检验的流行。 但是,由于某些人对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性。 将这些问题归类,可大致概括为以下两种情况不考虑t检验的应用前提,对两组的比较一律用t检验;将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较。 以上两种情况,均不同程度地增加了得出错误结论的风险。 而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小。 u检验(u test)以服从u分布的统计量检验统计假设的方法。 均值的检验。 一个正态总体当0:022已知时,用检验统计量其中, 0、02为已知正态总体的均值与方差,X为样本平均数,n为样本含量。 当总体分布但样本含量较大时,用检验统计量两个正态总体H012当两个总体方差 12、22已知时,用检验统计量当总体分布但样本含量较大时,用检验统计量总体率的检验(适用于大样本)。 一个总体H0:0用检验统计量两个总体H012用检验统计量其中,为两样本率的加权平均数,m 1、m2分别为两样本中某事件出现的频数。 u检验的判断结论对给定的显著性水平,查正态分布表,当0. 05、0.01时,临界值分别为1. 96、2.58。 当u1.96时,P0.05,不拒绝H0,差异不具显著性;当1.96u2.58时,P0.05,拒绝H0,差异具显著性;当u2.58时,P0.01,拒绝H0,差异具高度显著性。 只要u检验的条件满足,如正态总体02已知或是大样本,都可使用该方法,如某一运动队通过一段时间的训练后成绩是否有所提高,可以进行u检验。 皮尔逊x2检验和卡方检验一样吗?皮尔逊x2检验是检验实际频数和理论频数是否较为接近,统计学家卡尔?皮尔逊1900年提出了如下检验统计量X2=【(实际频数-理论频数的)2】/理论频数它近似服从自由度为V=组格数估计参数个数1的分布。 式中,n是样本量,理论频数是由样本量乘以由理论分布确定的组格概率计算的。 求和项数为组格数目。 皮尔逊统计量的直观意义十分显然是各组格的实际观测频数与理论期望频数的相对平方偏差的总和,若值充分大,则应认为样本提供了理论分布与统计分布不同的显著证据,即假设的总体分布与总体的实际分布不符,从而应否定所假定的理论分布。 所以,应当在分布密度曲线图的右尾部建立拒绝域。 卡方检验有很多种,跟他们叫卡方检验是因为构造的统计量服从或近似服从卡方分布,然后再根据卡方分布建立检验规则,比如检验正态总体方差的是否为某定值的卡方检验构造的统计量是那样的这个统计量服从n-1的卡方分布,所以这个检验也叫卡方检验。 T检验(T Test)什么是T检验T检验是用于小样本(样本容量小于30)的两个平均值差异程度的检验方法。 它是用T分布理论来推断差异发生的概率,从而判定两个平均数的差异是否显著。 T检验是戈斯特为了观测酿酒质量而发明的。 戈斯特在位于都柏林的健力士酿酒厂担任统计学家,基于Claude Gu
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年夫妻共同财产分割离婚协议范本
- 2025年房屋抵押贷款与房地产评估服务合同样本
- 2025版外聘讲师企业执行力提升合作合同协议书
- 2025年度品牌形象广告设计与施工一体化合同
- 2025版三轮车车身涂装环保材料供应合同
- 2025版燃料油期货交易合同范本及风险控制细则
- 2025版新能源产业入股合同范本
- 2025版高效节水灌溉项目施工总承包合同范本
- 贵州省印江土家族苗族自治县2025年上半年公开招聘村务工作者试题含答案分析
- 2025版全新科技项目居间合作协议
- 蚊虫消杀培训课件
- 智能建筑中机器人的应用与装配式施工技术
- 支架术后护理常规课件
- 贝尔面瘫个案护理
- 急性主动脉综合征非外科强化治疗中国专家共识解读 2
- 教师培训Ai课件
- 妇产科子宫脱垂护理查房
- 检测机构强制性标准规范执行措施
- 肿瘤放射治疗护理常规
- 专题:根据首字母填空 六年级英语下册期末复习考点培优专项鲁教版(五四学制)(含答案解析)
- 2025年驻村帮扶培训课件
评论
0/150
提交评论