第10讲 数阵图.doc_第1页
第10讲 数阵图.doc_第2页
第10讲 数阵图.doc_第3页
第10讲 数阵图.doc_第4页
第10讲 数阵图.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第10章 数阵【知识要点】填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题,也是一类比较常见的填数问题。这里,和同学们讨论一些数阵的填法。解答数阵问题通常用两种方法:一是待定数法,二是试验法。1.待定数法就是先用字母(或符号)表示满足条件的数,通过分析、计算来确定这些字母(或符号)应具备的条件,为解答数阵问题提供方向。2.试验法就是根据题中所给条件选准突破口,确定填数的可能范围。把分析推理和试验法结合起来,再由填数的可能情况,确定应填的数。【方法分类讲解】(1)待定数法【经典例题解析】【例1】把5、6、7、8、9五个数分别填入下图的五个方格里,如图a使横行三个数的和与竖行三个数的和都是21。【举一反三】1. 将17七个自然数分别填入图中的圆圈里,使每条线上三个数的和都等于12。(2)试验法【经典例题解析】【例2】将110这十个数填入下图小圆中,使每个大圆上六个数的和是30。【举一反三】2. 把18八个数分别填入下图的内,使每个大圆上五个内数的和都等于20。分析与解:中间两个数是重叠数,重叠次数都是1次,所以两个重叠数之和为212-(1+2+8)=6。在已知的八个数中,两个数之和为6的只有1与5,2与4。每个大圆上另外三个数之和为21-6=15。如果两个重叠数为1与5,那么剩下的六个数2,3,4,6,7,8平分为两组,每组三数之和为15的只有2+6+7=15和3+4+8=15,故有左下图的填法。如果两个重叠数为2与4,那么同理可得上页右下图的填法。【经典例题解析】【例3】将16这六个数分别填入下图的圆中,使每条直线上三个圆内数的和相等、且最大。【举一反三】3. 将16六个数分别填入下图的内,使每边上的三个内数的和相等、且最大。分析与解:与例2不同的是不知道每边的三数之和等于几。因为三个重叠数都重叠了一次,由(1+2+6)+重叠数之和=每边三数之和3,得到每边的三数之和等于(1+2+6)+重叠数之和3=(21+重叠数之和)3=7+重叠数之和3。因为每边的三数之和是整数,所以重叠数之和应是3的倍数。考虑到重叠数是16中的数,所以三个重叠数之和只能是6,9,12或15,对应的每条边上的三数之和就是9,10,11或12。每边三数之和=9 每边三数之和=10 每边三数之和=11 每边三数之和=12【经典例题解析】【例4】将17分别填入下图的7个内,使每条线段上三个内数的和相等。【举一反三】4. 将111这十一个数分别填进下图的里,使每条线上3个内的数的和相等。【例5】将16这六个自然数分别填入右图的六个内,使得三角形每条边上的三个数之和都等于11。分析与解:本题有三个重叠数,即三角形三个顶点内的数都是重叠数,并且各重叠一次。所以三个重叠数之和等于113-(1+2+6)=12。16中三个数之和等于12的有1,5,6;2,4,6;3,4,5。如果三个重叠数是1,5,6,那么根据每条边上的三个数之和等于11,可得左下图的填法。容易发现,所填数不是16,不合题意。同理,三个重叠数也不能是3,4,5。经试验,当重叠数是2,4,6时,可以得到符合题意的填法(见右上图)。【举一反三】 将29这八个数分别填入右图的里,使每条边上的三个数之和都等于18。分析与解:四个角上的数是重叠数,重叠次数都是1次。所以四个重叠数之和等于184-(2+3+9)=28。而在已知的八个数中,四数之和为28的只有:4+7+8

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论