免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
向量公式大全ps.加粗字母表示向量1.向量加法 AB+BC=ACa+b=(x+x,y+y)a+0=0+a=a运算律: 交换律:a+b=b+a 结合律:(a+b)+c=a+(b+c) 2.向量减法 AB-AC=CB 即“共同起点,指向被减” 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 a=(x,y) b=(x,y) 则 a-b=(x-x,y-y). 3.数乘向量 实数和向量a的乘积是一个向量,记作a,且a=a 当0时,a与a同方向 当0时,a与a反方向 当=0时,a=0,方向任意 当a=0时,对于任意实数,都有a=0 ps.按定义知,如果a=0,那么=0或a=0 实数向量a的系数,乘数向量a的几何意义就是将表示向量a的有向线段伸长或压缩 当1时,表示向量a的有向线段在原方向(0)或反方向(0)上伸长为原来的倍 当1时,表示向量a的有向线段在原方向(0)或反方向(0)上缩短为原来的倍 数乘运算律:结合律:(a)b=(ab)=(ab) 向量对于数的分配律(第一分配律):(+)a=a+a. 数对于向量的分配律(第二分配律):(a+b)=a+b. 数乘向量的消去律: 如果实数0且a=b,那么a=b 如果a0且a=a,那么= 4.向量的数量积 定义:已知两个非零向量a,b 作OA=a,OB=b,则AOB称作a和b的夹角,记作a,b并规定0a,b 两个向量的数量积(内积、点积)是一个数量,记作ab 若a、b不共线,则ab=|a|b|cosa,b 若a、b共线,则ab=+-ab 向量的数量积的坐标表示:ab=xx+yy 向量数量积运算律ab=ba(交换律) (a)b=(ab)(关于数乘法的结合律) (a+b)c=ac+bc(分配律)向量的数量积的性质aa=|a|2ab =ab=0 |ab|a|b| 向量的数量积与实数运算的主要不同点 重要 1、(ab)ca(bc) 例如:(ab)2a2b2 2、由 ab=ac (a0),推不出 b=c 3、|ab|a|b| 4、由 |a|=|b| ,推不出 a=b或a=-b 5、向量向量积 定义:两个向量a和b的向量积是一个向量,记作ab.若a、b不共线,则ab的模是:ab=|a|b|sina,b.ab的方向是:垂直于a和b,且a、b和ab按这个次序构成右手系.若a、b共线,则ab=0.性质ab是以a和b为边的平行四边形面积 aa=0 a/b=ab=0 运算律ab=-ba (a)b=(ab)=a(b) (a+b)c=ac+bc. ps.向量没有除法 “向量AB/向量CD”是没有意义的6.向量的三角形不等式 a-ba+ba+b 当且仅当a、b反向时,左边取等号 当且仅当a、b同向时,右边取等号 a-ba-ba+b 当且仅当a、b同向时,左边取等号 当且仅当a、b反向时,右边取等号 三点共线定理 若OC=OA +OB ,且+=1 ,则A、B、C三点共线 三角形重心判断式 在ABC中,若GA +GB +GC=O,则G为ABC的重心 向量共线的重要条件 若b0,则a/b的重要条件是存在唯一实数,使a=b,xy-xy=0 零向量0平行于任何向量向量垂直的充要条件 ab的充要条件是 ab=0 xx+yy=0 零向量0垂直于任何向量7.定比分点 定比分点公式P1P= PP2 设P1、P2是直线上的两点,P是直线上不同于P1、P2的任意一点 则存在一个实数 ,使P1P= PP2,叫做点P分有向线段P1P2所成的比 若P1(x1,y1),P2(x2,y2),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省宿迁市重点中学2025-2026学年生物高二第一学期期末综合测试试题含解析
- 2025-2026学年辽宁省葫芦岛市第一中学化学高二上期末学业质量监测模拟试题含解析
- 2025至2030中国零售百货行业发展分析及投资前景与战略规划报告(版)
- 中国铁路成都局集团有限公司招聘高校毕业生笔试真题2024
- 广东深圳大学附属实验中学招聘教师笔试真题2024
- 医疗废物和污水处理管理制度
- 智能酒店管理系统介绍
- 星级酒店培训餐饮
- 手术患者术中皮肤管理
- 向上管理和向下管理
- 装修增减项单模板
- 华东师大版数学九年级上册测量课件
- 超星尔雅学习通人工智能(上海大学)章节测试答案
- 特殊血液净化技术临床应用与护理
- 上海市2023年基准地价更新成果
- GB/T 34306-2017干旱灾害等级
- GB/T 29618.2-2017现场设备工具(FDT)接口规范第2部分:概念和详细描述
- GB/T 21838.1-2019金属材料硬度和材料参数的仪器化压入试验第1部分:试验方法
- GA/T 1133-2014基于视频图像的车辆行驶速度技术鉴定
- ansys教学算例集fl-二维流化床中均匀分析
- 部编版小学五年级语文上册-期中测试卷(含答案)
评论
0/150
提交评论