1.4函数基本性质.doc_第1页
1.4函数基本性质.doc_第2页
1.4函数基本性质.doc_第3页
1.4函数基本性质.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高考数学复习学案4: . 函数基本性质【知识点归纳】1奇偶性(1)定义:如果对于函数f(x)定义域内的任意x都有f(x)=f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(x)=f(x),则称f(x)为偶函数。注意: 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; 由函数的奇偶性定义可知,即定义域关于原点对称。(2)利用定义判断函数奇偶性的格式步骤: 首先确定函数的定义域,并判断其定义域是否关于原点对称; 确定f(x)与f(x)的关系; 作出相应结论:若f(x) = f(x) 或 f(x)f(x) = 0,则f(x)是偶函数;若f(x) =f(x) 或 f(x)f(x) = 0,则f(x)是奇函数(3)简单性质:图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称;设,的定义域分别是,那么在它们的公共定义域上:奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇2单调性(1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2)),那么就说f(x)在区间D上是增函数(减函数);注意: 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 必须是对于区间D内的任意两个自变量x1,x2;当x1x2时,总有f(x1)f(x2)(2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。(3)设复合函数y= fg(x),同增异减 (5)简单性质奇函数在其对称区间上的单调性相同;偶函数在其对称区间上的单调性相反; 在公共定义域内:增函数增函数是增函数;减函数减函数是减函数;3利用函数单调性的判断函数的最大(小)值的方法: 利用二次函数的性质(配方法)求函数的最大(小)值; 利用图象求函数的最大(小)值; 利用函数单调性的判断函数的最大(小)值:4周期性定义:如果存在一个非零常数T,使得对于函数定义域内的任意x,都有f(x+T)= f(x),则称f(x)为周期函数。【基础回归】1、下列函数在(,0)上是增函数的是( ) A) B) C) D) 2、若f(x)=(2m1)x + n在区间(,+)上是单调递减函数,则m的取值范围是( )A) B) C) D) 3、若f(x)=x22ax+c在区间(1,+)上是单调函数,则a的取值范围是( )A) a1 D) a1,且c f(-3) f(2) Bf() f(2) f(3)Cf() f(3) f(2) Df() f(2)f(3)9、下列函数是偶函数的是( )A B C D10、已知f(x)是定义在R上的奇函数,当x 0时,,那么f(1/2)的值是( )A/3 B/3 C D11、(08福建)函数,若,则的值为( )A.3B.0C. 1D. 212、已知函数,若,则( )A1/2 B1/2 C2 D213、(07广东)若函数f(x)=x3(xR),则函数y=f(-x)在其定义域上是( )函数 A单调递减的偶 B.单调递减的奇 C单调递增的偶 D单调递增的奇14、(2009浙江文)若函数,则下列结论正确的是( )A,在上是增函数w.w.w.k.s.5.u.c.o.m C,是偶函数B,在上是减函数 D,是奇函数15、(07山东) 设,则使函数的定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论