




文档简介
INTJADVMANUFTECHNOL2001171041132001SPRINGERVERLAGLONDONLIMITEDFIXTURECLAMPINGFORCEOPTIMISATIONANDITSIMPACTONWORKPIECELOCATIONACCURACYBLIANDSNMELKOTEGEORGEWWOODRUFFSCHOOLOFMECHANICALENGINEERING,GEORGIAINSTITUTEOFTECHNOLOGY,GEORGIA,USAWORKPIECEMOTIONARISINGFROMLOCALISEDELASTICDEFORMATIONATFIXTUREWORKPIECECONTACTSOWINGTOCLAMPINGANDMACHININGFORCESISKNOWNTOAFFECTSIGNIFICANTLYTHEWORKPIECELOCATIONACCURACYAND,HENCE,THEFINALPARTQUALITYTHISEFFECTCANBEMINIMISEDTHROUGHFIXTUREDESIGNOPTIMISATIONTHECLAMPINGFORCEISACRITICALDESIGNVARIABLETHATCANBEOPTIMISEDTOREDUCETHEWORKPIECEMOTIONTHISPAPERPRESENTSANEWMETHODFORDETERMININGTHEOPTIMUMCLAMPINGFORCESFORAMULTIPLECLAMPFIXTURESUBJECTEDTOQUASISTATICMACHININGFORCESTHEMETHODUSESELASTICCONTACTMECHANICSMODELSTOREPRESENTTHEFIXTUREWORKPIECECONTACTANDINVOLVESTHEFORMULATIONANDSOLUTIONOFAMULTIOBJECTIVECONSTRAINEDOPTIMISATIONMODELTHEIMPACTOFCLAMPINGFORCEOPTIMISATIONONWORKPIECELOCATIONACCURACYISANALYSEDTHROUGHEXAMPLESINVOLVINGA321TYPEMILLINGFIXTUREKEYWORDSELASTICCONTACTMODELLINGFIXTURECLAMPINGFORCEOPTIMISATION1INTRODUCTIONTHELOCATIONANDIMMOBILISATIONOFTHEWORKPIECEARETWOCRITICALFACTORSINMACHININGAMACHININGFIXTUREACHIEVESTHESEFUNCTIONSBYLOCATINGTHEWORKPIECEWITHRESPECTTOASUITABLEDATUM,ANDCLAMPINGTHEWORKPIECEAGAINSTITTHECLAMPINGFORCEAPPLIEDMUSTBELARGEENOUGHTORESTRAINTHEWORKPIECEMOTIONCOMPLETELYDURINGMACHININGHOWEVER,EXCESSIVECLAMPINGFORCECANINDUCEUNACCEPTABLELEVELOFWORKPIECEELASTICDISTORTION,WHICHWILLADVERSELYAFFECTITSLOCATIONAND,INTURN,THEPARTQUALITYHENCE,ITISNECESSARYTODETERMINETHEOPTIMUMCLAMPINGFORCESTHATMINIMISETHEWORKPIECELOCATIONERRORDUETOELASTICDEFORMATIONWHILESATISFYINGTHETOTALRESTRAINTREQUIREMENTPREVIOUSRESEARCHERSINTHEFIXTUREANALYSISANDSYNTHESISAREAHAVEUSEDTHEFINITEELEMENTFEMODELLINGAPPROACHORCORRESPONDENCEANDOFFPRINTREQUESTSTODRSNMELKOTE,GEORGEWWOODRUFFSCHOOLOFMECHANICALENGINEERING,GEORGIAINSTITUTEOFTECHNOLOGY,ATLANTA,GEORGIA303320405,USAEMAILSHREYESMELKOTEMEGATECHEDUTHERIGIDBODYMODELLINGAPPROACHEXTENSIVEWORKBASEDONTHEFEAPPROACHHASBEENREPORTED18WITHTHEEXCEPTIONOFDEMETER8,ACOMMONLIMITATIONOFTHISAPPROACHISTHELARGEMODELSIZEANDCOMPUTATIONCOSTALSO,MOSTOFTHEFEBASEDRESEARCHHASFOCUSEDONFIXTURELAYOUTOPTIMISATION,ANDCLAMPINGFORCEOPTIMISATIONHASNOTBEENADDRESSEDADEQUATELYSEVERALRESEARCHERSHAVEADDRESSEDFIXTURECLAMPINGFORCEOPTIMISATIONBASEDONTHERIGIDBODYMODEL911THERIGIDBODYMODELLINGAPPROACHTREATSTHEFIXTUREELEMENTANDWORKPIECEASPERFECTLYRIGIDSOLIDSDEMETER12,13USEDSCREWTHEORYTOSOLVEFORTHEMINIMUMCLAMPINGFORCETHEOVERALLPROBLEMWASFORMULATEDASALINEARPROGRAMWHOSEOBJECTIVEWASTOMINIMISETHENORMALCONTACTFORCEATEACHLOCATINGPOINTBYADJUSTINGTHECLAMPINGFORCEINTENSITYTHEEFFECTOFTHECONTACTFRICTIONFORCEWASNEGLECTEDBECAUSEOFITSRELATIVELYSMALLMAGNITUDECOMPAREDWITHTHENORMALCONTACTFORCESINCETHISAPPROACHISBASEDONTHERIGIDBODYASSUMPTION,ITCANUNIQUELYONLYHANDLE3DFIXTURINGSCHEMESTHATINVOLVENOMORETHAN6UNKNOWNSFUHANDNEE14ALSOPRESENTEDANITERATIVESEARCHBASEDMETHODTHATCOMPUTESTHEMINIMUMCLAMPINGFORCEBYASSUMINGTHATTHEFRICTIONFORCEDIRECTIONSAREKNOWNAPRIORITHEPRIMARYLIMITATIONOFTHERIGIDBODYANALYSISISTHATITISSTATICALLYINDETERMINATEWHENMORETHANSIXCONTACTFORCESAREUNKNOWNASARESULT,WORKPIECEDISPLACEMENTSCANNOTBEDETERMINEDUNIQUELYBYTHISMETHODTHISLIMITATIONMAYBEOVERCOMEBYACCOUNTINGFORTHEELASTICITYOFTHEFIXTUREWORKPIECESYSTEM15FORARELATIVELYRIGIDWORKPIECE,THELOCATIONOFTHEWORKPIECEINTHEMACHININGFIXTUREISSTRONGLYINFLUENCEDBYTHELOCALISEDELASTICDEFORMATIONATTHEFIXTURINGPOINTSHOCKENBERGERANDDEMETER16USEDEMPIRICALCONTACTFORCEDEFORMATIONRELATIONSCALLEDMETAFUNCTIONSTOSOLVEFORTHEWORKPIECERIGIDBODYDISPLACEMENTSDUETOCLAMPINGANDQUASISTATICMACHININGFORCESTHESAMEAUTHORSALSOINVESTIGATEDTHEEFFECTOFMACHININGFIXTUREDESIGNPARAMETERSONWORKPIECEDISPLACEMENT17GUIETAL18REPORTEDANELASTICCONTACTMODELFORIMPROVINGWORKPIECELOCATIONACCURACYTHROUGHOPTIMISATIONOFTHECLAMPINGFORCEHOWEVER,THEYDIDNOTADDRESSMETHODSFORCALCULATINGTHEFIXTUREWORKPIECECONTACTSTIFFNESSINADDITION,THEAPPLICATIONOFTHEIRALGORITHMFORASEQUENCEOFMACHININGLOADSREPRESENTINGAFINITETOOLPATHWASNOTDISCUSSEDLIANDMELKOTE19ANDHURTADOANDMELKOTE20USEDCONTACTMECHANICSTOFIXTURECLAMPINGFORCEOPTIMISATION105SOLVEFORTHECONTACTFORCESANDWORKPIECEDISPLACEMENTPRODUCEDBYTHEELASTICDEFORMATIONATTHEFIXTURINGPOINTSOWINGTOCLAMPINGLOADSTHEYALSODEVELOPEDMETHODSFOROPTIMISINGTHEFIXTURELAYOUT21ANDCLAMPINGFORCEUSINGTHISMETHOD22HOWEVER,CLAMPINGFORCEOPTIMISATIONFORAMULTICLAMPSYSTEMANDITSIMPACTONWORKPIECEACCURACYWERENOTCOVEREDINTHESEPAPERSTHISPAPERPRESENTSANEWALGORITHMBASEDONTHECONTACTELASTICITYMETHODFORDETERMININGTHEOPTIMUMCLAMPINGFORCESFORAMULTICLAMPFIXTUREWORKPIECESYSTEMSUBJECTEDTOQUASISTATICLOADSTHEMETHODSEEKSTOMINIMISETHEIMPACTOFWORKPIECEMOTIONDUETOCLAMPINGANDMACHININGLOADSONTHEPARTLOCATIONACCURACYBYSYSTEMATICALLYOPTIMISINGTHECLAMPINGFORCESACONTACTMECHANICSMODELISUSEDTODETERMINEASETOFCONTACTFORCESANDDISPLACEMENTS,WHICHARETHENUSEDFORTHECLAMPINGFORCEOPTIMISATIONTHECOMPLETEPROBLEMISFORMULATEDANDSOLVEDASAMULTIOBJECTIVECONSTRAINEDOPTIMISATIONPROBLEMTHEIMPACTOFCLAMPINGFORCEOPTIMISATIONONWORKPIECELOCATIONACCURACYISANALYSEDVIATWOEXAMPLESINVOLVINGA321FIXTURELAYOUTFORAMILLINGOPERATION2FIXTUREWORKPIECECONTACTMODELLING21MODELLINGASSUMPTIONSTHEMACHININGFIXTURECONSISTSOFLLOCATORSANDCCLAMPSWITHSPHERICALTIPSTHEWORKPIECEANDFIXTUREMATERIALSARELINEARLYELASTICINTHECONTACTREGION,ANDPERFECTLYRIGIDELSEWHERETHEWORKPIECEFIXTURESYSTEMISSUBJECTEDTOQUASISTATICLOADSDUETOCLAMPINGANDMACHININGTHECLAMPINGFORCEISASSUMEDTOBECONSTANTDURINGMACHININGTHISASSUMPTIONISVALIDWHENHYDRAULICORPNEUMATICCLAMPSAREUSEDINREALITY,THEELASTICITYOFTHEFIXTUREWORKPIECECONTACTREGIONISDISTRIBUTEDHOWEVER,INTHISMODELDEVELOPMENT,LUMPEDCONTACTSTIFFNESSISASSUMEDSEEFIG1THEREFORE,THECONTACTFORCEANDLOCALISEDDEFORMATIONATTHEITHFIXTURINGPOINTCANBERELATEDASFOLLOWSFIJKIJDIJ1WHEREKIJJX,Y,ZDENOTESTHECONTACTSTIFFNESSINTHETANGENTIALANDNORMALDIRECTIONSOFTHELOCALXI,YI,ZICOORDINATEFRAME,DIJFIG1ALUMPEDSPRINGFIXTUREWORKPIECECONTACTMODELXI,YI,ZI,DENOTETHELOCALCOORDINATEFRAMEATTHEITHCONTACTJX,Y,ZARETHECORRESPONDINGLOCALISEDELASTICDEFORMATIONSALONGTHEXI,YI,ANDZIAXES,RESPECTIVELY,FIJJX,J,ZREPRESENTSTHELOCALCONTACTFORCECOMPONENTSWITHFIXANDFIYBEINGTHELOCALXIANDYICOMPONENTSOFTHETANGENTIALFORCE,ANDFIZTHENORMALFORCE22WORKPIECEFIXTURECONTACTSTIFFNESSMODELTHELUMPEDCOMPLIANCEATASPHERICALTIPLOCATOR/CLAMPANDWORKPIECECONTACTISNOTLINEARBECAUSETHECONTACTRADIUSVARIESNONLINEARLYWITHTHENORMALFORCE23THECONTACTDEFORMATIONDUETOTHENORMALFORCEPIACTINGBETWEENASPHERICALTIPPEDFIXTUREELEMENTOFRADIUSRIANDAPLANARWORKPIECESURFACECANBEOBTAINEDFROMTHECLOSEDFORMHERTZIANSOLUTIONTOTHEPROBLEMOFASPHEREINDENTINGANELASTICHALFSPACEFORTHISPROBLEM,THENORMALDEFORMATIONDINISGIVENAS23,P93DINS9PI216RIE2D1/32WHERE1E1N2WEW1N2FEFEWANDEFAREYOUNGSMODULIFORTHEWORKPIECEANDFIXTUREMATERIALS,RESPECTIVELY,ANDNWANDNFAREPOISSONRATIOSFORTHEWORKPIECEANDFIXTUREMATERIALS,RESPECTIVELYTHETANGENTIALDEFORMATIONDITDITXORDITYINTHELOCALXIANDYITANGENTIALDIRECTIONS,RESPECTIVELYDUETOATANGENTIALFORCEQIQIXORQIYHASTHEFOLLOWINGFORM23,P217DTITQI8AIS2NFGF2NWGWD3WHEREAIS3PIRI4S1NFEF1NWEWDD1/3ANDGWANDGFARESHEARMODULIFORTHEWORKPIECEANDFIXTUREMATERIALS,RESPECTIVELYAREASONABLELINEARAPPROXIMATIONOFTHECONTACTSTIFFNESSCANBEOBTAINEDFROMALEASTSQUARESFITTOEQ2THISYIELDSTHEFOLLOWINGLINEARISEDCONTACTSTIFFNESSVALUESKIZ882S16RIE29D1/34KIXKIY4ES2NJGF2NWGWD1KIZ5INDERIVINGTHEABOVELINEARAPPROXIMATION,THENORMALFORCEPIWASASSUMEDTOVARYFROM0TO1000N,ANDTHECORRESPONDINGR2VALUEOFTHELEASTSQUARESFITWASFOUNDTOBE0943CLAMPINGFORCEOPTIMISATIONTHEGOALISTODETERMINETHESETOFOPTIMALCLAMPINGFORCESTHATWILLMINIMISETHEWORKPIECERIGIDBODYMOTIONDUETO106BLIANDSNMELKOTELOCALISEDELASTICDEFORMATIONINDUCEDBYTHECLAMPINGANDMACHININGLOADS,WHILEMAINTAININGTHEFIXTUREWORKPIECESYSTEMINQUASISTATICEQUILIBRIUMDURINGMACHININGMINIMISATIONOFTHEWORKPIECEMOTIONWILL,INTURN,REDUCETHELOCATIONERRORTHISGOALISACHIEVEDBYFORMULATINGTHEPROBLEMASAMULTIOBJECTIVECONSTRAINEDOPTIMISATIONPROBLEM,ASDESCRIBEDNEXT31OBJECTIVEFUNCTIONFORMULATIONSINCETHEWORKPIECEROTATIONDUETOFIXTURINGFORCESISOFTENQUITESMALL17THEWORKPIECELOCATIONERRORISASSUMEDTOBEDETERMINEDLARGELYBYITSRIGIDBODYTRANSLATIONDDWDXWDYWDZWT,WHEREDXW,DYW,ANDDZWARETHETHREEORTHOGONALCOMPONENTSOFDDWALONGTHEXG,YG,ANDZGAXESSEEFIG2THEWORKPIECELOCATIONERRORDUETOTHEFIXTURINGFORCESCANTHENBECALCULATEDINTERMSOFTHEL2NORMOFTHERIGIDBODYDISPLACEMENTASFOLLOWSIDDWIDXW2DYW2DZW26WHEREIIDENOTESTHEL2NORMOFAVECTORINPARTICULAR,THERESULTANTCLAMPINGFORCEACTINGONTHEWORKPIECEWILLADVERSELYAFFECTTHELOCATIONERRORWHENMULTIPLECLAMPINGFORCESAREAPPLIEDTOTHEWORKPIECE,THERESULTANTCLAMPINGFORCE,PRCPRXPRYPRZT,HASTHEFORMPRCRCPC7WHEREPCPL1PLCTISTHECLAMPINGFORCEVECTOR,RCNL1NLCTISTHECLAMPINGFORCEDIRECTIONMATRIX,NLICOSALICOSBLICOSGLITISTHECLAMPINGFORCEDIRECTIONCOSINEVECTOR,ANDALI,BLI,ANDGLIAREANGLESMADEBYTHECLAMPINGFORCEVECTORATTHEITHCLAMPINGPOINTWITHRESPECTTOTHEXG,YG,ZGCOORDINATEAXESI1,2,CINTHISPAPER,THEWORKPIECELOCATIONERRORDUETOCONTACTREGIONDEFORMATIONISASSUMEDTOBEINFLUENCEDONLYBYTHENORMALFORCEACTINGATTHELOCATORWORKPIECECONTACTSTHEFRICTIONALFORCEATTHECONTACTSISRELATIVELYSMALLANDISNEGLECTEDWHENANALYSINGTHEIMPACTOFTHECLAMPINGFORCEONTHEWORKPIECELOCATIONERRORDENOTINGTHERATIOOFTHENORMALCONTACTSTIFFNESS,KIZ,TOTHESMALLESTNORMALSTIFFNESSAMONGALLLOCATORS,KSZ,BYJII1,L,ANDASSUMINGTHATTHEWORKPIECERESTSONNX,NY,ANDNZNUMBEROFLOCATORSORIENTEDINTHEXG,FIG2WORKPIECERIGIDBODYTRANSLATIONANDROTATIONYG,ANDZGDIRECTIONS,THEEQUIVALENTCONTACTSTIFFNESSINTHEXG,YG,ANDZGDIRECTIONSCANBECALCULATEDASKSZSONXI1JID,KSZSONYI1JID,ANDKSZSONZI1JIDRESPECTIVELYSEEFIG3THEWORKPIECERIGIDBODYMOTION,DDW,DUETOCLAMPINGACTIONCANNOWBEWRITTENASDDW3PRXKSZSONXI1JIDPRYKSZSONYI1JIDPRZKSZSONZI1JID4T8THEWORKPIECEMOTION,ANDHENCETHELOCATIONERRORCANBEREDUCEDBYMINIMISINGTHEWEIGHTEDL2NORMOFTHERESULTANTCLAMPINGFORCEVECTORTHEREFORE,THEFIRSTOBJECTIVEFUNCTIONCANBEWRITTENASMINIMIZEIPRCIW11PRXONXI1JI221PRYONYI1JI221PRZONZI1JI2229NOTETHATTHEWEIGHTINGFACTORSAREPROPORTIONALTOTHEEQUIVALENTCONTACTSTIFFNESSESINTHEXG,YG,ANDZGDIRECTIONSTHECOMPONENTSOFPRCAREUNIQUELYDETERMINEDBYSOLVINGTHECONTACTELASTICITYPROBLEMUSINGTHEPRINCIPLEOFMINIMUMTOTALCOMPLEMENTARYENERGY15,23THISENSURESTHATTHECLAMPINGFORCESANDTHECORRESPONDINGLOCATORREACTIONSARE“TRUE”SOLUTIONSTOTHECONTACTPROBLEMANDYIELD“TRUE”RIGIDBODYDISPLACEMENTS,ANDTHATTHEWORKPIECEISKEPTINSTATICEQUILIBRIUMBYTHECLAMPINGFORCESATALLTIMESTHEREFORE,THEMINIMISATIONOFTHETOTALCOMPLEMENTARYENERGYFORMSTHESECONDOBJECTIVEFUNCTIONFORTHECLAMPINGFORCEOPTIMISATIONANDISGIVENBYMINIMISEUW12FOLCI1FIX2KIXOLCI1FIY2KIYOLCI1FIZ2KIZG10LTQLFIG3THEBASISFORTHEDETERMINATIONOFTHEWEIGHTINGFACTORFORTHEL2NORMCALCULATIONFIXTURECLAMPINGFORCEOPTIMISATION107WHEREUREPRESENTSTHECOMPLEMENTARYSTRAINENERGYOFTHEELASTICALLYDEFORMEDBODIES,WREPRESENTSTHECOMPLEMENTARYWORKDONEBYTHEEXTERNALFORCEANDMOMENTS,QDIAGC1XC1YC1ZCLCXCLCYCLCZISTHEDIAGONALCONTACTCOMPLIANCEMATRIX,CIJKIJ1,ANDLF1XF1YF1ZFLCXFLCYFLCZTISTHEVECTOROFALLCONTACTFORCES32FRICTIONANDSTATICEQUILIBRIUMCONSTRAINTSTHEOPTIMISATIONOBJECTIVEINEQ10ISSUBJECTTOCERTAINCONSTRAINTSANDBOUNDSFOREMOSTAMONGTHEMISTHESTATICFRICTIONCONSTRAINTATEACHCONTACTCOULOMBSFRICTIONLAWSTATESTHATFIX2FIY2MISFIZMISISTHESTATICFRICTIONCOEFFICIENTACONSERVATIVEANDLINEARISEDVERSIONOFTHISNONLINEARCONSTRAINTCANBEUSEDANDISGIVENBY19UFIXUUFIYUMISFIZ11SINCEQUASISTATICLOADSAREASSUMED,THESTATICEQUILIBRIUMOFTHEWORKPIECEISENSUREDBYINCLUDINGTHEFOLLOWINGFORCEANDMOMENTEQUILIBRIUMEQUATIONSINVECTORFORMOF012OM0WHERETHEFORCESANDMOMENTSCONSISTOFTHEMACHININGFORCES,WORKPIECEWEIGHTANDTHECONTACTFORCESINTHENORMALANDTANGENTIALDIRECTIONS33BOUNDSSINCETHEFIXTUREWORKPIECECONTACTISSTRICTLYUNILATERAL,THENORMALCONTACTFORCE,PI,CANONLYBECOMPRESSIVETHISISEXPRESSEDBYTHEFOLLOWINGBOUNDONPIPI0I1,LC13WHEREITISASSUMEDTHATNORMALFORCESDIRECTEDINTOTHEWORKPIECEAREPOSITIVEINADDITION,THENORMALCOMPRESSIVESTRESSATACONTACTCANNOTEXCEEDTHECOMPRESSIVEYIELDSTRENGTHSYOFTHEWORKPIECEMATERIALTHISUPPERBOUNDISWRITTENASPISYAII1,LC14WHEREAIISTHECONTACTAREAATTHEITHWORKPIECEFIXTURECONTACTTHECOMPLETECLAMPINGFORCEOPTIMISATIONMODELCANNOWBEWRITTENASMINIMIZEFHF1F2JHLTQLIPRCIWJ15SUBJECTTO11144ALGORITHMFORMODELSOLUTIONTHEMULTIOBJECTIVEOPTIMISATIONPROBLEMINEQ15CANBESOLVEDBYTHEECONSTRAINTMETHOD24THISMETHODIDENTIFIESONEOFTHEOBJECTIVEFUNCTIONSASPRIMARY,ANDCONVERTSTHEOTHERINTOACONSTRAINTINTHISWORK,THEMINIMISATIONOFTHECOMPLEMENTARYENERGYF1ISTREATEDASTHEPRIMARYOBJECTIVEFUNCTION,ANDTHEWEIGHTEDL2NORMOFTHERESULTANTCLAMPINGFORCEF2ISTREATEDASACONSTRAINTTHECHOICEOFF1ASTHEPRIMARYOBJECTIVEENSURESTHATAUNIQUESETOFFEASIBLECLAMPINGFORCESISSELECTEDASARESULT,THEWORKPIECEFIXTURESYSTEMISDRIVENTOASTABLESTATEIETHEMINIMUMENERGYSTATETHATALSOHASTHESMALLESTWEIGHTEDL2NORMFORTHERESULTANTCLAMPINGFORCETHECONVERSIONOFF2INTOACONSTRAINTINVOLVESSPECIFYINGTHEWEIGHTEDL2NORMTOBELESSTHANOREQUALTOE,WHEREEISANUPPERBOUNDONF2TODETERMINEASUITABLEE,ITISINITIALLYASSUMEDTHATALLCLAMPINGFORCESAREUNKNOWNTHECONTACTFORCESATTHELOCATINGANDCLAMPINGPOINTSARECOMPUTEDBYCONSIDERINGONLYTHEFIRSTOBJECTIVEFUNCTIONIEF1WHILETHISSETOFCONTACTFORCESDOESNOTNECESSARILYYIELDTHELOWESTCLAMPINGFORCES,ITISA“TRUE”FEASIBLESOLUTIONTOTHECONTACTELASTICITYPROBLEMTHATCANCOMPLETELYRESTRAINTHEWORKPIECEINTHEFIXTURETHEWEIGHTEDL2NORMOFTHESECLAMPINGFORCESISCOMPUTEDANDTAKENASTHEINITIALVALUEOFETHEREFORE,THECLAMPINGFORCEOPTIMISATIONPROBLEMINEQ15CANBEREWRITTENASMINIMIZEF1LTQL16SUBJECTTOIPRCIWE,1114ANALGORITHMSIMILARTOTHEBISECTIONMETHODFORFINDINGROOTSOFANEQUATIONISUSEDTODETERMINETHELOWESTUPPERBOUNDFORIPRCIWBYDECREASINGTHEUPPERBOUNDEASMUCHASPOSSIBLE,THEMINIMUMWEIGHTEDL2NORMOFTHERESULTANTCLAMPINGFORCEISOBTAINEDTHENUMBEROFITERATIONS,K,NEEDEDTOTERMINATETHESEARCHDEPENDSONTHEREQUIREDPREDICTIONACCURACYDANDUEU,ANDISGIVENBY25KFLOG2SUEUDDG17WHEREIDENOTESTHECEILINGFUNCTIONTHECOMPLETEALGORITHMISGIVENINFIG45DETERMINATIONOFOPTIMUMCLAMPINGFORCESDURINGMACHININGTHEALGORITHMPRESENTEDINTHEPREVIOUSSECTIONCANBEUSEDTODETERMINETHEOPTIMUMCLAMPINGFORCEFORASINGLELOADVECTORAPPLIEDTOTHEWORKPIECEHOWEVER,DURINGMILLINGTHEMAGNITUDEANDPOINTOFCUTTINGFORCEAPPLICATIONCHANGESCONTINUOUSLYALONGTHETOOLPATHTHEREFORE,ANINFINITESETOFOPTIMUMCLAMPINGFORCESCORRESPONDINGTOTHEINFINITESETOFMACHININGLOADSWILLBEOBTAINEDWITHTHEALGORITHMOFFIG4THISSUBSTANTIALLYINCREASESTHECOMPUTATIONALBURDENANDCALLSFORACRITERION/PROCEDUREFORSELECTINGASINGLESETOFCLAMPINGFORCESTHATWILLBESATISFACTORYANDOPTIMUMFORTHEENTIRETOOLPATHACONSERVATIVEAPPROACHTOADDRESSINGTHESEISSUESISDISCUSSEDNEXTCONSIDERAFINITENUMBERSAYMOFSAMPLEPOINTSALONGTHETOOLPATHYIELDINGMCORRESPONDINGSETSOFOPTIMUMCLAMPINGFORCESDENOTEDASP1OPT,P2OPT,PMOPTATEACHSAMPLING108BLIANDSNMELKOTEFIG4CLAMPINGFORCEOPTIMISATIONALGORITHMUSEDINEXAMPLE1POINT,THEFOLLOWINGFOURWORSTCASEMACHININGLOADVECTORSARECONSIDEREDFXMAXFMAXXF1YF1ZTFYMAXF2XFMAXYF2ZTFZMAXF3XF3YFMAXZT18FRMAXF4XF4YF4ZTWHEREFMAXX,FMAXY,ANDFMAXZARETHEMAXIMUMXG,YG,ANDZGCOMPONENTSOFTHEMACHININGFORCE,THESUPERSCRIPTS1,2,3OFFX,FY,ANDFZSTANDFORTHEOTHERTWOORTHOGONALMACHININGFORCECOMPONENTSCORRESPONDINGTOFMAXX,FMAXY,ANDFMAXZ,RESPECTIVELY,ANDIFRMAXIMAXFX2FY2FZ2ALTHOUGHTHEFOURWORSTCASEMACHININGLOADVECTORSWILLNOTACTONTHEWORKPIECEATTHESAMEINSTANT,THEYWILLOCCURONCEPERCUTTERREVOLUTIONATCONVENTIONALFEEDRATES,THEERRORINTRODUCEDBYAPPLYINGTHELOADVECTORSATTHESAMEPOINTWOULDBENEGLIGIBLETHEREFORE,INTHISWORK,THEFOURLOADVECTORSAREAPPLIEDATTHESAMELOCATIONBUTNOTSIMULTANEOUSLYONTHEWORKPIECECORRESPONDINGTOTHESAMPLINGINSTANTTHECLAMPINGFORCEOPTIMISATIONALGORITHMOFFIG4ISTHENUSEDTOCALCULATETHEOPTIMUMCLAMPINGFORCESCORRESPONDINGTOEACHSAMPLINGPOINTTHEOPTIMUMCLAMPINGFORCESHAVETHEFORMPIJMAXCI1JCI2JCICJTI1,MJX,Y,Z,R19WHEREPIJMAXISTHEVECTOROFOPTIMUMCLAMPINGFORCESFORTHEFOURWORSTCASEMACHININGLOADVECTORS,ANDCIKJK1,CISTHEFORCEMAGNITUDEATEACHCLAMPCORRESPONDINGTOTHEITHSAMPLEPOINTANDTHEJTHLOADSCENARIOAFTERPIJMAXISCOMPUTEDFOREACHLOADAPPLICATIONPOINT,ASINGLESETOF“OPTIMUM”CLAMPINGFORCESMUSTBESELECTEDFROMALLOFTHEOPTIMUMCLAMPINGFORCESFOUNDFOREACHCLAMPFROMALLTHESAMPLEPOINTSANDLOADINGCONDITIONSTHISISDONEBYSORTINGTHEOPTIMUMCLAMPINGFORCEMAGNITUDESATACLAMPINGPOINTFORALLLOADSCENARIOSANDSAMPLEPOINTSANDSELECTINGTHEMAXIMUMVALUE,CMAXK,ASGIVENINEQ20CMAXKCIKJK1,C20ONCETHISISCOMPLETE,ASETOFOPTIMISEDCLAMPINGFORCESPOPTCMAX1CMAX2CMAXCTISOBTAINEDTHESEFORCESMUSTBEVERIFIEDFORTHEIRABILITYTOENSURESTATICEQUILIBRIUMOFTHEWORKPIECEFIXTURESYSTEMOTHERWISE,MORESAMPLINGPOINTSARESELECTEDANDTHEAFOREMENTIONEDPROCEDUREREPEATEDINTHISFASHION,THE“OPTIMUM”CLAMPINGFORCE,POPT,CANBEDETERMINEDFORTHEENTIRETOOLPATHFIGURE5SUMMARISESTHEALGORITHMJUSTDESCRIBEDNOTETHATALTHOUGHTHISAPPROACHISCONSERVATIVE,ITPROVIDESASYSTEMATICWAYOFDETERMININGASETOFCLAMPINGFORCESTHATMINIMISETHEWORKPIECELOCATIONERROR6IMPACTONWORKPIECELOCATIONACCURACYITISOFINTERESTTOEVALUATETHEIMPACTOFTHECLAMPINGFORCEALGORITHMPRESENTEDEARLIERONTHEWORKPIECELOCATIONACCURACYTHEWORKPIECEISFIRSTPLACEDONTHEFIXTUREBASEPLATEINCONTACTWITHTHELOCATORSCLAMPINGFORCESARETHENAPPLIEDTOPUSHTHEWORKPIECEAGAINSTTHELOCATORSCONSEQUENTLY,LOCALISEDDEFORMATIONSOCCURATEACHWORKPIECEFIXTURECONTACT,CAUSINGTHEWORKPIECETOTRANSLATEANDROTATEINTHEFIXTURESUBSEQUENTLY,THEQUASISTATICMACHININGLOADISAPPLIEDCAUSINGADDITIONALMOTIONOFTHEWORKPIECEINTHEFIXTURETHEWORKPIECERIGIDBODYMOTIONISDEFINEDBYITSTRANSLATIONDDWDXWDYWDZWTANDROTATIONDUWDUWXDUWYDUWZTABOUTTHEXG,YG,ANDZGAXESSEEFIG2ASNOTEDEARLIER,THEWORKPIECERIGIDBODYMOTIONARISESFROMTHELOCALISEDDEFORMATION,DIDIXDIYDIZT,ATEACHFIXTURINGPOINTASSUMINGTHATRIXIYIZITDESCRIBESTHEPOSITIONVECTOROFTHEITHLOCATINGPOINTRELATIVETOTHEWORKPIECECENTREOFMASS,THECOORDINATETRANSFORMATIONTHEOREMCANBEUSEDTOEXPRESSDIINTERMSOFTHEWORKPIECETRANSLATION,DDWDXWDYWDZW,ANDWORKPIECEROTATION,DUWDUWXDUWYDUWZT,ASFOLLOWSDIR1ITRDUWRIDDWRI21WHERER1IDENOTESTHEROTATIONMATRIXDESCRIBINGTHEORIENTATIONOFTHELOCALXI,YI,ZICOORDINATEFRAMEATTHEITHCONTACTRELATIVETOTHEGLOBALCOORDINATEFRAMEANDRDUWCISAROTATIONMATRIXFIXTURECLAMPINGFORCEOPTIMISATION109FIG5THEALGORITHMUSEDINEXAMPLE2FIG6THEWORKPIECELOCATIONERRORDRMDUETOCLAMPINGANDMACHININGDEFININGTHEORIENTATIONOFTHEWORKPIECEFIXEDCOORDINATEFRAMERELATIVETOTHEGLOBALCOORDINATEFRAMEASSUMINGTHATWORKPIECEROTATIONWITHINTHEFIXTUREDUETOCLAMPING,DUW,ISSMALL,RDUWCANBEAPPROXIMATEDASRDUWF1DUWZDUWYDUWZ1DUWXDUWYDUWX1G22EQUATION21CANNOWBEREWRITTENASDIR1ITBIQ23WHEREBI31000ZIYI010ZI0XI001YIXI04ISTHETRANSFORMATIONMATRIXOBTAINEDAFTERREARRANGINGEQ21,ANDQDXWDYWDZWDUWXDUWYDUWZTISTHEWORKPIECERIGIDBODYMOTIONVECTORDUETOCLAMPINGA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林省通化市七年级地理上册 1.1地球和地球仪说课稿3 (新版)新人教版
- 考点解析-广东省兴宁市中考数学真题分类(二元一次方程组)汇编定向练习练习题(含答案详解)
- 2025年江苏省南京市玄武区物理高三第一学期期末调研试题
- 河南省豫北重点中学2025年物理高三上期末考试模拟试题
- 2025-2026学年河北衡水武邑中学物理高三上期末质量跟踪监视试题
- 江西省宜春第九中学2025年高三物理第一学期期末统考模拟试题
- 5.3 应用二元一次方程组(鸡兔同笼) 说课稿 2024-2025学年北师大版数学八年级上册
- 湖南省衡阳市衡南县2022-2023学年九上期中数学试卷(原卷版)
- 2024年五年级英语下册 Unit 1 Going to Beijing Lesson 5 What Are They Doing说课稿 冀教版(三起)
- 2024年九年级化学上册 绪言 化学使世界变得更加绚丽多彩说课稿(pdf)(新版)新人教版
- 福建省2025-2026学年福州市高三年级第一次质量检测物理
- 2025至2030中国竹纤维行业市场行业市场深度研究及发展前景投资可行性分析报告
- 豆芽成长记录课件
- 公路施工应急预案
- 2025汽车金融考试题及答案
- 2025年工业机器人操作员技能考核题库及参考答案解析
- 2025低空经济发展及关键技术概况报告
- DLT 572-2021 电力变压器运行规程
- 营养风险筛查与评估课件(完整版)
- 中国传统文化完整版课件全套ppt教学教程汇总最新最全
- MaxPlax噬菌体包装试剂盒中文说明书(epicentreofillumina)
评论
0/150
提交评论