




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一部分 函数图象中点的存在性问题如图1,已知抛物线的方程C1: (m0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧(1)若抛物线C1过点M(2, 2),求实数m的值;(2)在(1)的条件下,求BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BHEH最小,求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与BCE相似?若存在,求m的值;若不存在,请说明理由图1思路点拨1第(3)题是典型的“牛喝水”问题,当H落在线段EC上时,BHEH最小2第(4)题的解题策略是:先分两种情况画直线BF,作CBFEBC45,或者作BF/EC再用含m的式子表示点F的坐标然后根据夹角相等,两边对应成比例列关于m的方程满分解答(1)将M(2, 2)代入,得解得m4(2)当m4时,所以C(4, 0),E(0, 2)所以SBCE(3)如图2,抛物线的对称轴是直线x1,当H落在线段EC上时,BHEH最小设对称轴与x轴的交点为P,那么因此解得所以点H的坐标为(4)如图3,过点B作EC的平行线交抛物线于F,过点F作FFx轴于F由于BCEFBC,所以当,即时,BCEFBC设点F的坐标为,由,得解得xm2所以F(m2, 0)由,得所以由,得整理,得016此方程无解图2 图3 图4如图4,作CBF45交抛物线于F,过点F作FFx轴于F,由于EBCCBF,所以,即时,BCEBFC在RtBFF中,由FFBF,得解得x2m所以F所以BF2m2,由,得解得综合、,符合题意的m为1.2 因动点产生的等腰三角形问题如图1,抛物线yax2bxc经过A(1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由图1 思路点拨1第(2)题是典型的“牛喝水”问题,点P在线段BC上时PAC的周长最小2第(3)题分三种情况列方程讨论等腰三角形的存在性满分解答(1)因为抛物线与x轴交于A(1,0)、B(3, 0)两点,设ya(x1)(x3),代入点C(0 ,3),得3a3解得a1所以抛物线的函数关系式是y(x1)(x3)x22x3(2)如图2,抛物线的对称轴是直线x1当点P落在线段BC上时,PAPC最小,PAC的周长最小设抛物线的对称轴与x轴的交点为H由,BOCO,得PHBH2所以点P的坐标为(1, 2)图2(3)点M的坐标为(1, 1)、(1,)、(1,)或(1,0)如图1,点A在x轴上,OA4,将线段OA绕点O顺时针旋转120至OB的位置(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由图1思路点拨1用代数法探求等腰三角形分三步:先分类,按腰相等分三种情况;再根据两点间的距离公式列方程;然后解方程并检验2本题中等腰三角形的角度特殊,三种情况的点P重合在一起满分解答(1)如图2,过点B作BCy轴,垂足为C在RtOBC中,BOC30,OB4,所以BC2,所以点B的坐标为(2)因为抛物线与x轴交于O、A(4, 0),设抛物线的解析式为yax(x4),代入点B,解得所以抛物线的解析式为(3)抛物线的对称轴是直线x2,设点P的坐标为(2, y)当OPOB4时,OP216所以4+y216解得当P在时,B、O、P三点共线(如图2)当BPBO4时,BP216所以解得当PBPO时,PB2PO2所以解得综合、,点P的坐标为,如图2所示图2 图31.3 因动点产生的直角三角形问题如图1,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当ACD的面积等于ACB的面积时,求点D的坐标;(3)若直线l过点E(4, 0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式图1 动感体验请打开几何画板文件名“12广州24”,拖动点M在以AB为直径的圆上运动,可以体验到,当直线与圆相切时,符合AMB90的点M只有1个请打开超级画板文件名“12广州24”,拖动点M在以AB为直径的圆上运动,可以体验到,当直线与圆相切时,符合AMB90的点M只有1个思路点拨1根据同底等高的三角形面积相等,平行线间的距离处处相等,可以知道符合条件的点D有两个2当直线l与以AB为直径的圆相交时,符合AMB90的点M有2个;当直线l与圆相切时,符合AMB90的点M只有1个3灵活应用相似比解题比较简便满分解答(1)由,得抛物线与x轴的交点坐标为A(4, 0)、B(2, 0)对称轴是直线x1(2)ACD与ACB有公共的底边AC,当ACD的面积等于ACB的面积时,点B、D到直线AC的距离相等过点B作AC的平行线交抛物线的对称轴于点D,在AC的另一侧有对应的点D设抛物线的对称轴与x轴的交点为G,与AC交于点H由BD/AC,得DBGCAO所以所以,点D的坐标为因为AC/BD,AGBG,所以HGDG而DHDH,所以DG3DG所以D的坐标为图2 图3(3)过点A、B分别作x轴的垂线,这两条垂线与直线l总是有交点的,即2个点M以AB为直径的G如果与直线l相交,那么就有2个点M;如果圆与直线l相切,就只有1个点M了联结GM,那么GMl在RtEGM中,GM3,GE5,所以EM4在RtEM1A中,AE8,所以M1A6所以点M1的坐标为(4, 6),过M1、E的直线l为根据对称性,直线l还可以是1.4 因动点产生的平行四边形问题如图1,抛物线与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连结BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF/DE交抛物线于点F,设点P的横坐标为m用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?设BCF的面积为S,求S与m的函数关系图1满分解答(1)A(1,0),B(3,0),C(0,3)抛物线的对称轴是x1(2)直线BC的解析式为yx3把x1代入yx3,得y2所以点E的坐标为(1,2)把x1代入,得y4所以点D的坐标为(1,4)因此DE=2因为PF/DE,点P的横坐标为m,设点P的坐标为,点F的坐标为,因此当四边形PEDF是平行四边形时,DE=FP于是得到解得,(与点E重合,舍去)因此,当m=2时,四边形PEDF是平行四边形时设直线PF与x轴交于点M,那么OM+BM=OB=3因此m的变化范围是0m3 图2 图31.5 因动点产生的梯形问题如图1,把两个全等的RtAOB和RtCOD方别置于平面直角坐标系中,使直角边OB、OD在x轴上已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F抛物线yax2bxc经过O、A、C三点(1)求该抛物线的函数解析式;(2)点P为线段OC上的一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)若AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),AOB在平移的过程中与COD重叠部分的面积记为S试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由 图1 思路点拨1如果四边形ABPM是等腰梯形,那么AB为较长的底边,这个等腰梯形可以分割为一个矩形和两个全等的直角三角形,AB边分成的3小段,两侧的线段长线段2AOB与COD重叠部分的形状是四边形EFGH,可以通过割补得到,即OFG减去OEH3求OEH的面积时,如果构造底边OH上的高EK,那么RtEHK的直角边的比为124设点A移动的水平距离为m,那么所有的直角三角形的直角边都可以用m表示满分解答(1)将A(1,2)、O(0,0)、C(2,1)分别代入yax2bxc,得 解得, 所以(2)如图2,过点P、M分别作梯形ABPM的高PP、MM,如果梯形ABPM是等腰梯形,那么AMBP,因此yAy MyPyB直线OC的解析式为,设点P的坐标为,那么解方程,得,x2的几何意义是P与C重合,此时梯形不存在所以图2 图3(3)如图3,AOB与COD重叠部分的形状是四边形EFGH,作EKOD于K设点A移动的水平距离为m,那么OG1m,GBm在RtOFG中,所以在RtAHG中,AG2m,所以所以在RtOEK中,OK2 EK;在RtEHK中,EK2HK;所以OK4HK因此所以所以于是因为0m1,所以当时,S取得最大值,最大值为1.6 因动点产生的面积问题如图1,在平面直角坐标系中,抛物线yax2bxc经过A(2, 4 )、O(0, 0)、B(2, 0)三点(1)求抛物线yax2bxc的解析式;(2)若点M是该抛物线对称轴上的一点,求AMOM的最小值图1动感体验请打开几何画板文件名“12滨州24”,拖动点M在抛物线的对称轴上运动(如图2),可以体验到,当M落在线段AB上时,根据两点之间线段最短,可以知道此时AMOM最小(如图3)请打开超级画板文件名“12滨州24”,拖动点M, M落在线段AB上时, AMOM最小答案 (1)。 (2)AMOM的最小值为图2 图3如图1,在平面直角坐标系中,抛物线yx22x3与x轴交于A、B两点,与y轴交于点C,点D是抛物线的顶点(1)求直线AC的解析式及B、D两点的坐标;(2)点P是x轴上的一个动点,过P作直线l/AC交抛物线于点Q试探究:随着点P的运动,在抛物线上是否存在点Q,使以A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由;(3)请在直线AC上找一点M,使BDM的周长最小,求出点M的坐标图1思路点拨1第(2)题探究平行四边形,按照AP为边或者对角线分两种情况讨论2第(3)题是典型的“牛喝水”问题,构造点B关于“河流”AC的对称点B,那么M落在BD上时,MBMD最小,MBD的周长最小满分解答(1)由yx22x3(x1)(x3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 考研专业中药试题及答案
- 人力专业试题及答案
- 酒店专业制度试题及答案
- 幼教专业试题及答案
- 门面混凝土夹层施工方案
- 抹灰施工专项施工方案
- 盘扣支架施工方案
- 龙门结构加固施工方案
- 冷拌沥青施工方案
- 水务行业技术规范与市场分析
- 2024下半年天翔外科手术器械ESG行动报告:供应链中的ESG责任与机遇
- 2025年生物化学与分子生物学综合题答案及解析
- 药品追溯试题及答案
- 辅警综合知识和能力素质考试试题(含答案)
- 网络文明培训课件
- DB65 T8038-2025 好住房建设技术标准
- 2025年理赔专业技术职务任职资格考试(理赔员·车险理赔)历年参考题库含答案详解(5套)
- 压力表课件教学课件
- 景区管理办法条例
- 马工程中华人民共和国史(第二版)课件 第二章 社会主义建设道路的艰辛探索和曲折发展1
- 粉末冶金制品制造工技能测试题库及答案
评论
0/150
提交评论