第二章整式.doc_第1页
第二章整式.doc_第2页
第二章整式.doc_第3页
第二章整式.doc_第4页
第二章整式.doc_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.1整式(1) 总第 课时 执教时间:教学目标: 1理解单项式及单项式系数、次数的概念。 2会准确迅速地确定一个单项式的系数和次数。 3初步培养学生观察、分析、抽象、概括等思维能力和应用意识。 4通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。 教师重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。 教学难点:单项式概念的建立。 教学方法:分层次教学,讲授、练习相结合。 教 具:小黑板教学过程: 一、复习引入: 1、列代数式 (1)若正方形的边长为a,则正方形的面积是 ; (2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为 ; (3)若x表示正方形棱长,则正方形的体积是 ; (4)若m表示一个有理数,则它的相反数是 ; (5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款 元。 (数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。) 2、请学生说出所列代数式的意义。 3、请学生观察所列代数式包含哪些运算,有何共同运算特征。 由小组讨论后,经小组推荐人员回答,教师适当点拨。 (充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。) 二、讲授新课: 1单项式: 通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。然后教师补充,单独一个数或一个字母也是单项式,如a,5。 2练习:判断下列各代数式哪些是单项式? (1)1.3;(2)abc; (3)b2;(4)5ab2;(5)y;(6)xy2;(7)5(加强学生对不同形式的单项式的直观认识,同时利用练习中的复备栏目单项式转入单项式的系数和次数的教学) 3单项式系数和次数: 直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。以四个单项式 a2h,2r,abc,m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。 4例题: 例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。 x1; yx2; r2; a2b。 例2:下面各题的判断是否正确? 7xy2的系数是7;x2y3与x3没有系数;ab3c2的次数是032; a3的系数是1;32x2y3的次数是7;r2h的系数是 。 通过其中的反例练习及例题,强调应注意以下几点: 圆周率是常数; 当一个单项式的系数是1或1时,“1”通常省略不写,如x2,a2b等; 单项式次数只与字母指数有关。 5游戏: 规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准。 (学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识。) 6课堂练习:课本p56:1,2。 三、课堂小结: 单项式及单项式的系数、次数。 根据教学过程反馈的信息对出现的问题有针对性地进行小结。 通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。 四、课堂作业: 课本p59:1,2。 板书设计: 单项式 1单项式的定义: 2例1: 例2: 教学后记:复备栏目2.1整式(2) 总第 课时 执教时间:教学目标:1通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念。2通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的能力。由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生知识的迁移和知识结构体系的更新。3初步体会类比和逆向思维的数学思想。教学重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。教学难点:多项式的次数。教学方法:分层次教学,讲授、练习相结合。教 具:小黑板教学过程:一、复习引入:1列代数式:(1)长方形的长与宽分别为a、b,则长方形的周长是 ;(2)某班有男生x人,女生21人,则这个班共有学生 人;(3)图中阴影部分的面积为_;(4)鸡兔同笼,鸡a只,兔b只,则共有头 个,脚 只。(由于本课的主题是多项式,通过列代数式引入多项式,既是对前面知识的回顾,又由此导入新课,既符合学生的认知水平,又能为学生学习新知提供丰富的素材。)2观察以上所得出的四个代数式与上节课所学单项式有何区别。(1)2(ab) ; (2)21x ; (3)ab ; (4)2a4b 。(由学生小组派代表回答,教师应肯定每一位学生说出的特点,培养学生观察、比较、归纳的能力,同时又锻炼他们的口表能力。通过特征的讲述,由学生自己归纳出多项式的定义,教室可给予适当的提示及补充。)二、讲授新课:1多项式:板书由学生自己归纳得出的多项式概念。上面这些代数式都是由几个单项式相加而成的。像这样,几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项,叫做常数项。例如,多项式有三项,它们是,2x,5。其中5是常数项。一个多项式含有几项,就叫几项式。多项式里,次数最高项的次数,就是这个多项式的次数。例如,多项式是一个二次三项式。复备栏目注意:(1)多项式的次数不是所有项的次数之和;(2)多项式的每一项都包括它前面的符号。(教师介绍多项式的项和次数以及常数项等,并让学生比较多项式的次数与单项式的次数的区别与联系,渗透类比的数学思想。)2例题:例1:判断:多项式a3a2ab2b3的项为a3、a2、ab2、b3,次数为12;多项式3n42n21的次数为4,常数项为1。(这两个判断能使学生清楚的理解多项式中项和次数的概念,第(1)题中第二、四项应为a2b、b3,而往往很多同学都认为是a2b和b3,不把符号包括在项中。另外也有同学认为该多项式的次数为12,应注意:多项式的次数为最高次项的次数。)例2:指出下列多项式的项和次数:(1)3x13x2; (2)4x32x2y2。例3:指出下列多项式是几次几项式。(1)x3x1; (2)x32x2y23y2。例4:已知代数式3xn(m1)x1是关于x的三次二项式,求m、n的条件。(让学生口答例2、例3,老师在黑板上规范书写格式。讲述例2时应特别提醒学生注意,多项式的项包括前面的符号,多项式的次数应为最高次项的次数。在例3讲完后插入整式的定义:单项式与多项式统称整式。例4分析时要紧扣多项式的定义,培养学生的逆向思维,使学生透彻理解多项式的有关概念,培养他们应用新知识解决问题的能力。)通过其中的反例练习及例题,强调应注意以下几点:填空:a2bab1是 次 项式,其中三次项系数是 ,二次项为 ,常数项为 ,写出所有的项 。已知代数式2x2mnx2y2是关于字母x、y的三次三项式,求m、n的条件。三、课堂小结:理解多项式的定义,能说出一个多项式是几次几项式,最高次数是几,分别由哪几项组成,各项的系数分别为多少,常数项为几。这堂课学习了多项式,与前一节所学单项式合起来统称为整式,使知识形成了系统。(让学生小结,师生进行补充。)四、课堂作业:课本习题:3多项式1多项式的定义: 2例: 例: 学生练习: 板书设计: 教学后记:复备栏目2.2整式的加减(1)同类项 总第 课时 执教时间:教学目标:知识目标:让学生通过探索获得同类项的概念;理解并掌握同类项。能力目标:通过对学生自主学习的组织,培养学生观察、概括能力情感目标:渗透分类的数学思想方法,形成与他人合作交流的意识。教学重点:同类项的概念教学难点:准确判断同类项教学方法:小组合作、师生互动。教具准备:小黑板教学过程:一、 教学引入1.用字母表示加法交换律、结合律及乘法分配律。2. 在多项式3x2y-4xy2-3+5x2y2+2xy2+5中含有哪些项?各项的系数、次数分别是什么?3.在西宁到拉萨路段,如果列车通过冻土的时间是t小时,那么它通过非冻土段所需要的时间就是2.1t小时,则这段铁路的全场为多少千米? 二、探究11.运用有理数的运算律计算:100*2+252*2=_100*(-2)+252*(-2)=_2.根据(1)中的方法完成下面的计算,并说明其中的道理:100t+252t= _分析:在(2)中,式子100t+252t表示100t与252t 两项的和。由于式子100t+252t与(1)中的式子100*2+252*2和100*(-2)+252*(-2)有相同的结构,并且字母 t 表示的是一个因(乘)数,因此根据分配律也应该有100t+252t=(100+252)t=352t探究2(1)100t-252t =( )t (2)3 x2+2x2 = ( ) x2(3)3ab2-4ab2 = ( )ab2上述运算有什么共同点,你能从中得出什么规律?观察:(1)中的多项式的项100t与-252t都含有相同的字母t,且t的指数都是1;(2)中多项式的项3 x2与2x2,它们都含有字母x,且x的指数复备栏目都是2;(3)中多项式的项3ab2与-4ab2,它们都含有字母a、b,且a的指数都是1,b的指数都是 2总结同类项的定义:像100t与-252t,3 x2与2x2,3ab2与-4ab2这样,所含字母相同,并且相同的字母指数也相同的项叫做同类项。(注:几个常数项也是同类项。 )练一练:1.说出下列各组中的两个单项式是不是同类项?为什么?(1)x2y与-3yx2; (2)a2b2与-ab2; (3)-3与6; (4)2a与ab2. 指出4x2 - 8x + 5 - 3x2 - 6x - 2中的同类项三、范例学习例1.合并下列各式的同类项: 1.xy2-xy2/5; 2.-3x2y+2x2y+3xy2-2xy2 ; 3.4a2+3b2-4a2-4b2 例2. k取何值时,3x k y与-x2y是同类项?为什么?四、课堂小结1. 什么叫同类项? 答:所含字母相同,且相同字母的指数也分别相同的项叫做同类项2. 判断同类项的两个标准是什么 答:各单项式所含字母相同 相同字母的指数也分别相同巩固练习:1.下列是同类项的是( )A.ab与ab2 B.-x2y与2y2x C.a2+b2与a2-b2 D.0.5m2n与3nm22.下列各式中,与x2y是同类项的是( )A-x2/2 B.2xy C.-x2y D.3x2y23.请写出一个单项式,使它与x2yz时同类项,这个单项式为 (答案不唯一五、课后作业 作业:课本66页1、2题;71页1题板书设计:教学后记:复备栏目2.2整式的加减(2)去括号 总第 课时 执教时间:教学目标:知识与技能:能运用运算律探究去括号法则,并且利用去括号法则将整式化简过程与方法:经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力情感态度与价值观:培养学生主动探究、合作交流的意识,严谨治学的学习态度教学重点:去括号法则,准确应用法则将整式化简教学难点:括号前面是“”号去括号时,括号内各项变号容易产生错误教学方法:小组合作、师生互动。教具准备:小黑板教学过程一、复习旧知、引入新课1.复习旧知-(+5)= +(+5)= -(-7)= +(-7)= 问题:等式从左边到右边发生了什么变化?(少了括号)2.如果括号里面加多一个数呢?又该如何把括号去掉啊?+3和-7的和 -(3- 7) +(3- 7)解:原式=(-1)x(3-7) 解:原式=(+1) x(3-7)=(-1) x 3+(-1) x(-7) = 1 x 3+1 x (-7) = - 3 + 7 = 3 7(由旧知引出-(+5)可以看作,+(+5)可以看作,从而让学生试着解答当括号中多出一个数字时该如何去括号。运用乘法分配律)3.如果把上面的数字换成字母,根据分配律,你能为下面的式子去括号吗? +(- a+c) -(- a+c)解:原式 = 1x(-a+c) 解:原式 =(-1)x(-a+c)= 1x(-a)+1xc =(-1)x(-a)+(-1)x c= -a+c = a-c +(a-b+c) -(a-b+c) 解:原式= 1x(a-b+c) 解:原式 = (-1)x(a-b+c)= a-b+c = -a+b-c (先由简单的正负数化简到在括号中添加一个数字再到数字转换成字母,层层递进,逐步将学生的思维由旧知引入到新课中来)复备栏目二、观察思考、揭示实质问题1:观察这两组算式,看看去括号前后,括号里各项的符号有什么变化?(引导学生观察、比较,给学生以充分的时间去交流和归纳,关注学生对法则的表述,培养学生的归纳和表达能力。)通过上述讨论,归纳出去括号法则:括号前是“+”号的,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前是“-”号的,把括号和它前面的“-”号去掉,括号里各项都改变符号。这一法则可编成一句顺口溜:去括号,看符号;是“+”号,不变号;是“-”号,全变号。三、步步深入,掌握法则练习1:(1)去括号:a+(b-c)= a-(b-c)= a+(-b+c)= a-(-b+c)= (2)判断正误:a-(b+c)= a-b+c ( )a-(b-c)= a-b-c ( )2b+(-3a+1)=2b-3a-1 ( )3a-(3b-c)=3a-3b+c ( )(直接利用法则口答解决(1),围绕(2)要求学生在判断过程中,找出错误的原因,并加以改正,使学生逐步深入地理解法则的使用。)例1. 为下面的式子去括号 +3(a-b+c) -3(a-b+c)解:原式= +3(a-b+c) 解:原式= -3(a-b+c)= +(3a-3b+3c) = -(3a-3b+3c)= 3a-3b+3c = -3a+3b-3c(先把前面的系数乘进括号中,再利用去括号法则运算。提醒学生前面系数要与括号中的每一个数相乘,不要漏项。或者直接运用已有知识乘法分配律进行运算。)练习2:去括号(括号内系数全为1) 9(x-z) -3(-b+c) 解:原式= 9x+9(-z) 解:原式= -3(-b)+3c= 9x-9z = -(-3b+3c)= 3b-3c4(-a+b-c) -7(-x-y+z)练习3:去括号(括号内系数不全为1) 2(3a+b) -7(-a+3b-2c)解:原式= 23a+2b 解:原式= -3(-2a)+33b= 6a+2b = -(-6a+9b)= 6a-9b -3(-2a+3b) 4(2x-3y+3c)复备栏目(学生板演,其余同学独立完成,由学生评判板演情况,共同归纳去括号时的典型错误,查明原因,强调法则的正确使用,进一步深入理解和掌握法则。PPT显示正确答案)注:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号四、课堂小结去括号时应注意的事项:(1)、去括号时应先判断括号前面是“+”号还是“”号。(2)、去括号后,括号内各项符号要么全变号,要么全不变。(3)、括号前面是“”号时,去掉括号后,括号内的各项符号都要变成相反,不能只改变第一项或前几项的符号。(4)、括号内原有几项,去掉括号后仍有几项,不能丢项。(5)、去括号法则的根据是利用分配律,计算时不能出现有些项漏乘的情况。五、作业布置 1. 课本68页,练习,第1题2. 课本71页,习题2.2,第2题六、板书设计去括号法则: 例1 复习注意事项: (1)、 练习(2)、(3)、(4)、(5)、板书设计:教学后记:复备栏目2.2 整式的加减(3) 总第 课时 执教时间:教学目标知识与技能:能根据题意列出式子,会用整式加减的运算法则进行整式加减运算,并能说明其中的算理过程与方法:经历用字母表示实际问题中的数量关系的过程,发展符号感,提高运算能力及综合运用知识进行分析、解决问题的能力情感态度与价值观:培养学生积极探索的学习态度,发展学生有条理地思考及整式表达能力,体会整式的应用价值教学重点:列式表示实际问题中的数量关系,会用整式加减的运算法则进行整式加减运算教学难点:列式表示问题中的数量关系,整式加减的运算法则的运用。教学方法:小组合作、师生互动。教具准备:小黑板教学过程一、创设情景,引入新课 上节课你收获了哪些?你能学到的知识帮助小红和小明吗活动一:小红和小明的数学活动:小红和小明各自在自己的纸片上写出了一个式子小红 : 小明: 2x-3y 5x+4y问题:(1)小红说,求出它们的和你能帮助她吗?(2)小明说,求5x+4y与2x-3y的差。 你还能帮助他吗? 尝试练习:(8a-7b)-(4a-5b)思考:如何进行整式的加减呢?小结:强调列式时需要添加括号,感知整式加减的先后顺序。二、新授思考:在实际运用中如何进行整式的加减呢?活动二出示 例7一种笔记本的单价是x(元),圆珠笔的单价是y(元),小红买这种笔记本3本,买圆珠笔2枝;小明买这种笔记本4个,买圆珠笔3枝,买这些笔记本和圆珠笔,小红和小明共花费多少钱? 教师操作投影仪,展示例题,启发、引导学生用不同方法列式表示小红和小明共花费的钱学生独立思考,然后与同伴交流思考点拨:方法一:小红买3本笔记本,花去3x元,2支圆珠笔花去2y元,复备栏目小红共花去(3x+2y)元;小明买4本笔记本,花去4x元,3枝圆珠笔花去3y元,小明共花去(4x+3y)元,所以他们一共花去(3x+2y)+(4x+3y)元方法二:小红和小明买笔记本共花去(3x+4x)元,买圆珠笔共花去(2y+3y)元买笔记本和圆珠笔共花去(3x+4x)+(2y+3y)元方法三:小红和小明共买了(3+4)本笔记本,(2+3)支圆珠笔,因此他们共花费(3+4)x+(2+3)y元点拨:让学生探索解题的不同方法,拓展学生思维,提高分析问题的能力,同时又活跃课堂气氛,增加学习兴趣小结:注意用括号表示,如(3x+2y),(4x+3y)。变式:小红比小明少花多少?买笔记本比圆珠笔多花多少? 学生补充问题,进行整式的加减。 例8做大小两个长方体纸盒,尺寸如下(单位:厘米)长宽高小纸盒 abc大纸盒 1.5a2b2c (1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比小纸盒多用料多少平方厘米?展示例3,学生小组学习,讨论解题方法思路点拨:长方体有6个面,相对的两个面是完全相同如图所示,上、下底面积都是ab,前后两面面积都是ac,左右两侧面积都是bc,所以小纸盒的表面积为2ab+2ac+2bc,同样,大纸盒的表面积为21.5a2b+21.5a+2c+22b2c=6ab+6ac+8bc 2c 2b 1.5a复备栏目解:(1)(2ab+2ac+2bc)+(6ab+6ac+8bc) =2ab+2ac+2bc+6ab+6ac+8bc) =8ab+8ac+10bc (2)(6ab+6ac+8bc)-(2ab+2ac+2bc) =6ab+6ac+8bc-2ab-2ac-2bc =4ab+4ac+6bc 因此做这两个纸盒共用料(8ab+8ac+10bc)平方厘米,做大纸盒比小纸盒多用料(4ab+4ac+6bc)平方厘米思考:通过上面的学习,你能得到整式加减的运算是如何进行的吗? 小结:让学生自己归纳整式加减运算法则,发展归纳、表达能力 一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项 练习。 礼堂第一排有(a-1)个座位,后面每排都比前一排多1个座位.(1).第二排有_个座位.(2).第三排有_个座位.(3).第n排有多少个座位?活动三 例9求x-2(x-y2)+(-x+y2)的值,其中x=-2,y= 思路点拨:先去括号,合并同类项化简后,再代入数值进行计算比较简便,去括号时,特别注意符号问题 解:x-2(x-y2)+(-x+y2) =x-2x+y2-x+y2 =(-2-)x+(+)y2 =-3x+y2 当x=-2,y=时原式=-3(-2)+()2=6+=6思考:对于比较复杂的求值问题应该先做什么,在做什么?小结:有括号就先去括号再合并同类项化简后,再代入数值进行计算比较简便。练习:a= ,b= 4时, -6a b 3(3a b 2ab +ab) 的值。三、学习反馈、巩固练习1.2x +x+1与A的和是x,则A=( )A。2x +1 B -2X +1 C 2x -1 D -2X -12.已知a+2b=5,ab=-3,则(3ab-2b)+(4b-4ab+a)=_.复备栏目3三角形的周长为48,第一边长为3a-2b,第二边长为a+2b,则第三边长_4求(2x -3xy+y -2xy)-(2x -5xy+2y-1)的值,其中四、课堂小结1.整式的加减运算法则 .2.列整式解决实际问题的一般步骤.3.比较复杂的式子求值,先化简,再把数值代入计算.五、作业布置1课本第71页至第72页第3、4题板书设计:教学后记:复备栏目整式复习课 总第 课时 执教时间:教学目标1、使学生对本章内容的认识更全面、更系统化;2、进一步加深学生对本章基础知识的理解以及基本技能(主要是计算)的掌握;3、通过复习,培养学生主动分析问题的习惯教学重点:本章基础知识的归纳、总结;教学难点:基础知识的运用;整式的加减运算教学方法:小组合作教 具:小黑板教学过程:一、复习本章主要概念、法则1、主要

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论