




已阅读5页,还剩51页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
9.4 矩形、菱形、正方形(解答题)1如图,在平行四边形ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点(1)求证:ABECDF;(2)当四边形AECF为菱形时,求出该菱形的面积2如图,四边形ABCD是菱形,CEAB交AB的延长线于点E,CFAD交AD的延长线于点F,求证:DF=BE3如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到ACD,再将ACD沿DB方向平移到ACD的位置,若平移开始后点D未到达点B时,AC交CD于E,DC交CB于点F,连接EF,当四边形EDDF为菱形时,试探究ADE的形状,并判断ADE与EFC是否全等?请说明理由4已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:ADECDF5如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求ADE的周长6如图,把EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6,BAD=60,且AB6(1)求EPF的大小;(2)若AP=10,求AE+AF的值;(3)若EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值7如图,在ABC中,ACB=90,D,E分别为AC,AB的中点,BFCE交DE的延长线于点F(1)求证:四边形ECBF是平行四边形;(2)当A=30时,求证:四边形ECBF是菱形8如图,AEBF,AC平分BAE,且交BF于点C,BD平分ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求AOD的度数;(2)求证:四边形ABCD是菱形9如图,ABCABD,点E在边AB上,CEBD,连接DE求证:(1)CEB=CBE;(2)四边形BCED是菱形10如图,在RtABC中,B=90,点E是AC的中点,AC=2AB,BAC的平分线AD交BC于点D,作AFBC,连接DE并延长交AF于点F,连接FC求证:四边形ADCF是菱形11如图,在四边形ABCF中,ACB=90,点E是AB边的中点,点F恰是点E关于AC所在直线的对称点(1)证明:四边形CFAE为菱形;(2)连接EF交AC于点O,若BC=10,求线段OF的长12如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF (1)四边形ABEF是;(选填矩形、菱形、正方形、无法确定)(直接填写结果)(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为,ABC=(直接填写结果)13如图,AC是矩形ABCD的对角线,过AC的中点O作EFAC,交BC于点E,交AD于点F,连接AE,CF(1)求证:四边形AECF是菱形;(2)若AB=,DCF=30,求四边形AECF的面积(结果保留根号)14如图,已知BD是矩形ABCD的对角线(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明)(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由15如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积16如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点(1)求证:CP=AQ;(2)若BP=1,PQ=2,AEF=45,求矩形ABCD的面积17如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求ABD的度数18已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EFDF,求证:BF=CD19如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将ADM沿直线AM对折,得到ANM(1)当AN平分MAB时,求DM的长;(2)连接BN,当DM=1时,求ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值20如图,菱形ABCD的对角线AC,BD相交于点O,且DEAC,AEBD求证:四边形AODE是矩形21如图,将平行四边形ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F(1)求证:BEFCDF;(2)连接BD、CE,若BFD=2A,求证:四边形BECD是矩形22阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题是,有如下思路:连接AC结合小敏的思路作答(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决一下问题:(2)如图2,在(1)的条件下,若连接AC,BD当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论23如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H(1)求证:PHCCFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系24已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF连接DE、DF求证:DE=DF25如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90到EF,过点F作BC的垂线交BC的延长线于点G,连接CF(1)求证:ABEEGF;(2)若AB=2,SABE=2SECF,求BE26已知:如图,在正方形ABCD中,点E在边CD上,AQBE于点Q,DPAQ于点P(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长27在平面直角坐标系中,点O为原点,点A的坐标为(6,0)如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限现将正方形OBCD绕点O顺时针旋转角得到正方形OEFG(1)如图2,若=60,OE=OA,求直线EF的函数表达式(2)若为锐角,tan=,当AE取得最小值时,求正方形OEFG的面积(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由28如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO(1)已知EO=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明29如图,四边形ABCD是正方形,点E是BC的中点,AEF=90,EF交正方形外角的平分线CF于F求证:AE=EF30如图,在正方形ABCD中,E是边AB的中点,F是边BC的中点,连结CE、DF求证:CE=DF答案与解析1(2016安顺)如图,在平行四边形ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点(1)求证:ABECDF;(2)当四边形AECF为菱形时,求出该菱形的面积【分析】第(1)问要证明三角形全等,由平行四边形的性质,很容易用SAS证全等第(2)要求菱形的面积,在第(1)问的基础上很快知道ABE为等边三角形这样菱形的高就可求了,用面积公式可求得【解答】(1)证明:在ABCD中,AB=CD,BC=AD,ABC=CDA又BE=EC=BC,AF=DF=AD,BE=DFABECDF(2)解:四边形AECF为菱形,AE=EC又点E是边BC的中点,BE=EC,即BE=AE又BC=2AB=4,AB=BC=BE,AB=BE=AE,即ABE为等边三角形,ABCD的BC边上的高为2sin60=,菱形AECF的面积为2【点评】考查了全等三角形,四边形的知识以及逻辑推理能力(1)用SAS证全等;(2)若四边形AECF为菱形,则AE=EC=BE=AB,所以ABE为等边三角形2(2016广安)如图,四边形ABCD是菱形,CEAB交AB的延长线于点E,CFAD交AD的延长线于点F,求证:DF=BE【分析】连接AC,根据菱形的性质可得AC平分DAE,CD=BC,再根据角平分线的性质可得CE=FC,然后利用HL证明RtCDFRtCBE,即可得出DF=BE【解答】证明:连接AC,四边形ABCD是菱形,AC平分DAE,CD=BC,CEAB,CFAD,CE=FC,CFD=CEB=90在RtCDF与RtCBE中,RtCDFRtCBE(HL),DF=BE【点评】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等同时考查了全等三角形的判定与性质3(2016荆州)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到ACD,再将ACD沿DB方向平移到ACD的位置,若平移开始后点D未到达点B时,AC交CD于E,DC交CB于点F,连接EF,当四边形EDDF为菱形时,试探究ADE的形状,并判断ADE与EFC是否全等?请说明理由【分析】当四边形EDDF为菱形时,ADE是等腰三角形,ADEEFC先证明CD=DA=DB,得到DAC=DCA,由ACAC即可得到DAE=DEA由此即可判断DAE的形状由EFAB推出CEF=EAD,EFC=ADC=ADE,再根据AD=DE=EF即可证明【解答】解:当四边形EDDF为菱形时,ADE是等腰三角形,ADEEFC理由:BCA是直角三角形,ACB=90,AD=DB,CD=DA=DB,DAC=DCA,ACAC,DAE=A,DEA=DCA,DAE=DEA,DA=DE,ADE是等腰三角形四边形DEFD是菱形,EF=DE=DA,EFDD,CEF=DAE,EFC=CDA,CDCD,ADE=ADC=EFC,在ADE和EFC中,ADEEFC【点评】本题考查平移、菱形的性质、全等三角形的判定和性质、直角三角形斜边中线定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型4(2016淮安)已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:ADECDF【分析】由菱形的性质得出AD=CD,由中点的定义证出DE=DF,由SAS证明ADECDF即可【解答】证明:四边形ABCD是菱形,AD=CD,点E、F分别为边CD、AD的中点,AD=2DF,CD=2DE,DE=DF,在ADE和CDF中,ADECDF(SAS)【点评】此题主要考查了全等三角形的判定、菱形的性质;熟练掌握菱形的性质,证明三角形全等是解决问题的关键5(2016苏州)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求ADE的周长【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可【解答】(1)证明:四边形ABCD是菱形,ABCD,ACBD,AECD,AOB=90,DEBD,即EDB=90,AOB=EDB,DEAC,四边形ACDE是平行四边形;(2)解:四边形ABCD是菱形,AC=8,BD=6,AO=4,DO=3,AD=CD=5,四边形ACDE是平行四边形,AE=CD=5,DE=AC=8,ADE的周长为AD+AE+DE=5+5+8=18【点评】此题考查平行四边形的性质和判定问题,关键是根据平行四边形的判定解答即可6(2016枣庄)如图,把EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6,BAD=60,且AB6(1)求EPF的大小;(2)若AP=10,求AE+AF的值;(3)若EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值【分析】(1)根据锐角三角函数求出FPG,最后求出EPF(2)先判断出RtPMERtPNF,再根据锐角三角函数求解即可,(3)根据运动情况及菱形的性质判断求出AP最大和最小值【解答】解:(1)过点P作PGEF于点G,如图1所示PE=PF=6,EF=6,FG=EG=3,FPG=EPG=EPF在RtFPG中,sinFPG=,FPG=60,EPF=120(2)过点P作PMAB于点M,作PNAD于点N,如图2所示AC为菱形ABCD的对角线,DAC=BAC,AM=AN,PM=PN在RtPME和RtPNF中,PM=PN,PE=PF,RtPMERtPNF,ME=NF又AP=10,PAM=DAB=30,AM=AN=APcos30=10=5,AE+AF=(AM+ME)+(ANNF)=AM+AN=10(3)如图,当EFP的三个顶点分别在AB,AD,AC上运动,点P在P,P之间运动,PO=PO=3,AO=9,AP的最大值为12,AP的最小值为6,【点评】此题是菱形的性质题,主要考查了菱形的性质,锐角三角函数,特殊角的三角函数,解本题的关键是作出辅助线7(2016三明)如图,在ABC中,ACB=90,D,E分别为AC,AB的中点,BFCE交DE的延长线于点F(1)求证:四边形ECBF是平行四边形;(2)当A=30时,求证:四边形ECBF是菱形【分析】(1)利用平行四边形的判定证明即可;(2)利用菱形的判定证明即可【解答】证明:(1)D,E分别为边AC,AB的中点,DEBC,即EFBC又BFCE,四边形ECBF是平行四边形(2)ACB=90,A=30,E为AB的中点,CB=AB,CE=ABCB=CE又由(1)知,四边形ECBF是平行四边形,四边形ECBF是菱形【点评】此题主要考查了平行四边形的判定以及菱形的判定与性质,利用平行四边形的判定以及菱形的判定是解题关键8(2016抚顺)如图,AEBF,AC平分BAE,且交BF于点C,BD平分ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求AOD的度数;(2)求证:四边形ABCD是菱形【分析】(1)首先根据角平分线的性质得到DAC=BAC,ABD=DBC,然后根据平行线的性质得到DAB+CBA=180,从而得到BAC+ABD=(DAB+ABC)=180=90,得到答案AOD=90;(2)根据平行线的性质得出ADB=DBC,DAC=BCA,根据角平分线定义得出DAC=BAC,ABD=DBC,求出BAC=ACB,ABD=ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出答案【解答】解:(1)AC、BD分别是BAD、ABC的平分线,DAC=BAC,ABD=DBC,AEBF,DAB+CBA,=180,BAC+ABD=(DAB+ABC)=180=90,AOD=90;(2)证明:AEBF,ADB=DBC,DAC=BCA,AC、BD分别是BAD、ABC的平分线,DAC=BAC,ABD=DBC,BAC=ACB,ABD=ADB,AB=BC,AB=ADAD=BC,ADBC,四边形ABCD是平行四边形,AD=AB,四边形ABCD是菱形【点评】本题考查了等腰三角形的性质,平行四边形的判定,菱形的判定的应用,能得出四边形ABCD是平行四边形是解此题的关键9(2016沈阳)如图,ABCABD,点E在边AB上,CEBD,连接DE求证:(1)CEB=CBE;(2)四边形BCED是菱形【分析】(1)欲证明CEB=CBE,只要证明CEB=ABD,CBE=ABD即可(2)先证明四边形CEDB是平行四边形,再根据BC=BD即可判定【解答】证明;(1)ABCABD,ABC=ABD,CEBD,CEB=DBE,CEB=CBE(2)ABCABD,BC=BD,CEB=CBE,CE=CB,CE=BDCEBD,四边形CEDB是平行四边形,BC=BD,四边形CEDB是菱形【点评】本题考查全等三角形的性质、菱形的判定、平行四边形的判定等知识,熟练掌握全等三角形的性质是解题的关键,记住平行四边形、菱形的判定方法,属于中考常考题型10(2016聊城)如图,在RtABC中,B=90,点E是AC的中点,AC=2AB,BAC的平分线AD交BC于点D,作AFBC,连接DE并延长交AF于点F,连接FC求证:四边形ADCF是菱形【分析】先证明AEFCED,推出四边形ADCF是平行四边形,再证明AEDABD,推出DFAC,由此即可证明【解答】证明:AFCD,AFE=CDE,在AFE和CDE中,AEFCEDAF=CD,AFCD,四边形ADCF是平行四边形由题意知,AE=AB,EAD=BAD,AD=AD,AEDABDAED=B=90,即DFAC四边形ADCF是菱形【点评】本题考查菱形的判定、全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,属于基础题,中考常考题型11(2016德阳)如图,在四边形ABCF中,ACB=90,点E是AB边的中点,点F恰是点E关于AC所在直线的对称点(1)证明:四边形CFAE为菱形;(2)连接EF交AC于点O,若BC=10,求线段OF的长【分析】(1)根据直角三角形的性质得到CE=AB=EA,根据轴对称的性质得到AE=AF,CE=CF,得到CE=EA=AF=CF,根据菱形的判定定理证明结论;(2)根据菱形的性质得到OA=OC,OE=OF,根据三角形中位线定理求出OE,得到答案【解答】(1)证明:ACB=90,点E是AB边的中点,CE=AB=EA,点F是点E关于AC所在直线的对称点,AE=AF,CE=CF,CE=EA=AF=CF,四边形CFAE为菱形;(2)解:四边形CFAE为菱形;OA=OC,OE=OF,OE=BC=5,OF=5【点评】本题考查的是菱形的判定和性质、轴对称的性质,掌握四条边相等的四边形是菱形、菱形的对角线垂直且互相平分是解题的关键12(2016梅州)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF (1)四边形ABEF是菱形;(选填矩形、菱形、正方形、无法确定)(直接填写结果)(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为10,ABC=120(直接填写结果)【分析】(1)先证明AEBAEF,推出EAB=EAF,由ADBC,推出EAF=AEB=EAB,得到BE=AB=AF,由此即可证明(2)根据菱形的性质首先证明AOB是含有30的直角三角形,由此即可解决问题【解答】解:(1)在AEB和AEF中,AEBAEF,EAB=EAF,ADBC,EAF=AEB=EAB,BE=AB=AFAFBE,四边形ABEF是平行四边形AB=AF,四边形ABEF是菱形故答案为菱形(2)四边形ABEF是菱形,AEBF,BO=OF=5,ABO=EBO,AB=10,AB=2BO,AOB=90BA0=30,ABO=60,AO=BO=5,ABC=2ABO=120故答案为,120【点评】本题考查菱形的判定和性质、平行四边形的性质、作图基本作图等知识,解题的关键是全等三角形的证明,想到利用特殊三角形解决问题,属于中考常考题型13(2016贺州)如图,AC是矩形ABCD的对角线,过AC的中点O作EFAC,交BC于点E,交AD于点F,连接AE,CF(1)求证:四边形AECF是菱形;(2)若AB=,DCF=30,求四边形AECF的面积(结果保留根号)【分析】(1)由过AC的中点O作EFAC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得AOFCOE,则可得AF=CE,继而证得结论;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,继而求得答案【解答】(1)证明:O是AC的中点,且EFAC,AF=CF,AE=CE,OA=OC,四边形ABCD是矩形,ADBC,AFO=CEO,在AOF和COE中,AOFCOE(AAS),AF=CE,AF=CF=CE=AE,四边形AECF是菱形;(2)解:四边形ABCD是矩形,CD=AB=,在RtCDF中,cosDCF=,DCF=30,CF=2,四边形AECF是菱形,CE=CF=2,四边形AECF是的面积为:ECAB=2【点评】此题考查了矩形的性质、菱形的判定与性质以及三角函数等知识注意证得AOFCOE是关键14(2016衢州)如图,已知BD是矩形ABCD的对角线(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明)(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由【分析】(1)分别以B、D为圆心,比BD的一半长为半径画弧,交于两点,确定出垂直平分线即可;(2)连接BE,DF,四边形BEDF为菱形,理由为:由EF垂直平分BD,得到BE=DE,DEF=BEF,再由AD与BC平行,得到一对内错角相等,等量代换及等角对等边得到BE=BF,再由BF=DF,等量代换得到四条边相等,即可得证【解答】解:(1)如图所示,EF为所求直线;(2)四边形BEDF为菱形,理由为:证明:EF垂直平分BD,BE=DE,DEF=BEF,ADBC,DEF=BFE,BEF=BFE,BE=BF,BF=DF,BE=ED=DF=BF,四边形BEDF为菱形【点评】此题考查了矩形的性质,菱形的判定,以及作图基本作图,熟练掌握性质及判定是解本题的关键15(2016扬州)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积【分析】(1)首先由矩形的性质和折叠的性质证得AB=CD,ADBC,ANF=90,CME=90,易得AN=CM,可得ANFCME(ASA),由平行四边形的判定定理可得结论;(2)由AB=6,AC=10,可得BC=8,设CE=x,则EM=8x,CM=106=4,在RtCEM中,利用勾股定理可解得x,由平行四边形的面积公式可得结果【解答】(1)证明:折叠,AM=AB,CN=CD,FNC=D=90,AME=B=90,ANF=90,CME=90,四边形ABCD为矩形,AB=CD,ADBC,AM=CN,AMMN=CNMN,即AN=CM,在ANF和CME中,ANFCME(ASA),AF=CE,又AFCE,四边形AECF是平行四边形;(2)解:AB=6,AC=10,BC=8,设CE=x,则EM=8x,CM=106=4,在RtCEM中,(8x)2+42=x2,解得:x=5,四边形AECF的面积的面积为:ECAB=56=30【点评】本题主要考查了折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键16(2016遵义)如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点(1)求证:CP=AQ;(2)若BP=1,PQ=2,AEF=45,求矩形ABCD的面积【分析】(1)由矩形的性质得出A=ABC=C=ADC=90,AB=CD,AD=BC,ABCD,ADBC,证出E=F,AE=CF,由ASA证明CFPAEQ,即可得出结论;(2)证明BEP、AEQ是等腰直角三角形,得出BE=BP=1,AQ=AE,求出PE=BP=,得出EQ=PE+PQ=3,由等腰直角三角形的性质和勾股定理得出AQ=AE=3,求出AB=AEBE=2,DQ=BP=1,得出AD=AQ+DQ=4,即可求出矩形ABCD的面积【解答】(1)证明:四边形ABCD是矩形,A=ABC=C=ADC=90,AB=CD,AD=BC,ABCD,ADBC,E=F,BE=DF,AE=CF,在CFP和AEQ中,CFPAEQ(ASA),CP=AQ;(2)解:ADBC,PBE=A=90,AEF=45,BEP、AEQ是等腰直角三角形,BE=BP=1,AQ=AE,PE=BP=,EQ=PE+PQ=+2=3,AQ=AE=3,AB=AEBE=2,CP=AQ,AD=BC,DQ=BP=1,AD=AQ+DQ=3+1=4,矩形ABCD的面积=ABAD=24=8【点评】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握矩形的性质,证明三角形全等是解决问题的关键17(2016广州)如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求ABD的度数【分析】首先证明OA=OB,再证明ABO是等边三角形即可解决问题【解答】解:四边形ABCD是矩形,OA=OC,OB=OD,AC=BD,AO=OB,AB=AO,AB=AO=BO,ABO是等边三角形,ABD=60【点评】本题考查矩形的性质、等边三角形的判定和性质等知识,熟练掌握矩形的性质是解题的关键,属于基础题,中考常考题型18(2016岳阳)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EFDF,求证:BF=CD【分析】由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到三角形BEF与三角形CFD全等,利用全等三角形对应边相等即可得证【解答】证明:四边形ABCD是矩形,B=C=90,EFDF,EFD=90,EFB+CFD=90,EFB+BEF=90,BEF=CFD,在BEF和CFD中,BEFCFD(ASA),BF=CD【点评】此题考查了矩形的性质,以及全等三角形的判定与性质,熟练掌握矩形的性质是解本题的关键19(2016福州)如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将ADM沿直线AM对折,得到ANM(1)当AN平分MAB时,求DM的长;(2)连接BN,当DM=1时,求ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值【分析】(1)由折叠性质得MAN=DAM,证出DAM=MAN=NAB,由三角函数得出DM=ADtanDAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出DMA=MAQ,由折叠性质得出DMA=AMQ,AN=AD=3,MN=MD=1,得出MAQ=AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出ANQ=90,在RtANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出ABN的面积;(3)过点A作AHBF于点H,证明ABHBFC,得出对应边成比例=,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明ABHBFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果【解答】解:(1)由折叠性质得:ANMADM,MAN=DAM,AN平分MAB,MAN=NAB,DAM=MAN=NAB,四边形ABCD是矩形,DAB=90,DAM=30,DM=ADtanDAM=3tan30=3=;(2)延长MN交AB延长线于点Q,如图1所示:四边形ABCD是矩形,ABDC,DMA=MAQ,由折叠性质得:ANMADM,DMA=AMQ,AN=AD=3,MN=MD=1,MAQ=AMQ,MQ=AQ,设NQ=x,则AQ=MQ=1+x,ANM=90,ANQ=90,在RtANQ中,由勾股定理得:AQ2=AN2+NQ2,(x+1)2=32+x2,解得:x=4,NQ=4,AQ=5,AB=4,AQ=5,SNAB=SNAQ=ANNQ=34=;(3)过点A作AHBF于点H,如图2所示:四边形ABCD是矩形,ABDC,HBA=BFC,AHB=BCF=90,ABHBFC,=,AHAN=3,AB=4,当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,AD=BC,AH=BC,在ABH和BFC中,ABHBFC(AAS),CF=BH,由勾股定理得:BH=,CF=,DF的最大值=DCCF=4【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键20(2016吉林)如图,菱形ABCD的对角线AC,BD相交于点O,且DEAC,AEBD求证:四边形AODE是矩形【分析】根据菱形的性质得出ACBD,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE是矩形【解答】证明:四边形ABCD为菱形,ACBD,AOD=90,DEAC,AEBD,四边形AODE为平行四边形,四边形AODE是矩形【点评】本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键21(2016南通)如图,将ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F(1)求证:BEFCDF;(2)连接BD、CE,若BFD=2A,求证:四边形BECD是矩形【分析】(1)先根据平行四边形的性质得出AB=CD,ABCD,再由BE=AB得出BE=CD,根据平行线的性质得出BEF=CDF,EBF=DCF,进而可得出结论;(2)根据平行四边形的性质可得ABCD,AB=CD,A=DCB,再由AB=BE,可得CD=EB,进而可判定四边形BECD是平行四边形,然后再证明BC=DE即可得到四边形BECD是矩形【解答】(1)证明:四边形ABCD是平行四边形,AB=CD,ABCDBE=AB,BE=CDABCD,BEF=CDF,EBF=DCF,在BEF与CDF中,BEFCDF(ASA);(2)证明:四边形ABCD是平行四边形,ABCD,AB=CD,A=DCB,AB=BE,CD=EB,四边形BECD是平行四边形,BF=CF,EF=DF,BFD=2A,BFD=2DCF,DCF=FDC,DF=CF,DE=BC,四边形BECD是矩形【点评】此题主要考查的值矩形的判定及平行四边形的性质,关键是掌握平行四边形的对边相等;对角相等;对角线互相平分22(2016兰州)阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题是,有如下思路:连接AC结合小敏的思路作答(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决一下问题:(2)如图2,在(1)的条件下,若连接AC,BD当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论【分析】(1)如图2,连接AC,根据三角形中位线的性质得到EFAC,EF=AC,然后根据平行四边形判定定理即可得到结论;(2)由(1)知,四边形EFGH是平行四边形,且FG=BD,HG=AC,于是得到当AC=BD时,FG=HG,即可得到结论;(3)根据平行线的性质得到GHBD,GHGF,于是得到HGF=90,根据矩形的判定定理即可得到结论【解答】解:(1)是平行四边形,证明:如图2,连接AC,E是AB的中点,F是BC的中点,EFAC,EF=AC,同理HGAC,HG=AC,综上可得:EFHG,EF=HG,故四边形EFGH是平行四边形;(2)AC=BD理由如下:由(1)知,四边形EFGH是平行四边形,且FG=BD,HG=AC,当AC=BD时,FG=HG,平行四边形EFGH是菱形,(3)当ACBD时,四边形EFGH为矩形;理由如下:同(2)得:四边形EFGH是平行四边形,ACBD,GHAC,GHBD,GFBD,GHGF,HGF=90,四边形EFGH为矩形【点评】此题主要考查了中点四边形,关键是掌握三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半23(2016台州)如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H(1)求证:PHCCFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系【分析】(1)由矩形的性质得出对边平行,再根据平行线的性质得出相等的角,结合全等三角形的判定定理AAS即可得出PHCCFP;(2)由矩形的性质找出D=B=90,再结合对边互相平行即可证出四边形PEDH和四边形PFBG都是矩形,通过角的正切值,在直角三角形中表示出直角边的关系,利用矩形的面积公式即可得出两矩形面积相等【解答】证明:(1)四边形ABCD为矩形,ABCD,ADBCPFAB,PFCD,CPF=PCHPHAD,PHBC,PCF=CPH在PHC和CFP中,PHCCFP(ASA)(2)四边形ABCD为矩形,D=B=90又EFABCD,GHADBC,四边形PEDH和四边形PFBG都是矩形EFAB,CPF=CAB在RtAGP中,AGP=90,PG=AGtanCAB在RtCFP中,CFP=90,CF=PFtanCPFS矩形DEPH=DEEP=CFEP=PFEPtanCPF;S矩形PGBF=PGPF=AGPFtanCAB=EPPFtanCABtanCPF=tanCAB,S矩形DEPH=S矩形PGBF【点评】本题考查了矩形的判定及性质、全等三角形的判定及性质以及平行线的性质,解题的关键是:(1)通过平行找出相等的角;(2)利用矩形的判定定理来证明四边形为矩形本题属于中档题,难度不大,解决该题型题目时,根据结合矩形的性质及全等三角形的判定定理来解决问题是关键24(2016无锡)已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF连接DE、DF求证:DE=DF【分析】根据正方形的性质可得AD=CD,C=DAF=90,然后利用“边角边”证明DCE和DAF全等,再根据全等三角形对应边相等证明即可【解答】证明:四边形ABCD是正方形,AD=CD,DAB=C=90,FAD=180DAB=90在DCE和DAF中,DCEDAF(SAS),DE=DF【点评】本题考查了正方形的性质,全等三角形的判定与性质,利用全等三角形对应边相等证明线段相等是常用的方法之一,一定要熟练掌握并灵活运用25(2016来宾)如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90到EF,过点F作BC的垂线交BC的延长线于点G,连接CF(1)求证:ABEEGF;(2)若AB=2,SABE=2SECF,求BE【分析】(1)根据同角的余角相等得到一对角相等,再由一对直角相等,且AE=EF,利用AAS得到三角形ABE与三角形EFG全等;(2)利用全等三角形的性质得出AB=EG=2,SABE=SEGF,求出SEGF=2SECF,根据三角形面积得出EC=CG=1,根据正方形的性质得出BC=AB=2,即可求出答案【解答】(1)证明:EPAE,AEB+GEF=90,又AEB+BAE=90,GEF=BAE,又FGBC,ABE=EGF=90,在ABE与EGF中,ABEEGF(AAS);(2)解:ABEEGF,AB=2,AB=EG=2,SABE=SEGF,SABE=2SECF,SEGF=2SECF,EC=CG=1,四边形ABCD是正方形,BC=AB=2,BE=21=1【点评】此题属于四边形综合题,涉及的知识有:全等三角形的判定与性质,正方形的性质,三角形的面积,熟练掌握判定与性质是解本题的关键26(2016哈尔滨)已知:如图,在正方形ABCD中,点E在边CD上,AQBE于点Q,DPAQ于点P(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 轻巧夺冠高二数学试卷
- 烟囱道施工方案(3篇)
- 活动策划方案100字开头(3篇)
- 水泵销售促销活动方案策划(3篇)
- 餐饮开学季活动策划方案(3篇)
- 北京市朝阳区2023-2024学年七年级上学期期末质量监测历史试卷及答案
- 安徽省芜湖市繁昌区2023-2024学年高一下学期第一次月考语文试题含参考答案
- 2025年7月安恒信息网络安全月报(精简版)
- 小学学霸作业题目及答案
- 在线教育课程制作指南
- 跨境监管合作模式-洞察及研究
- GB/T 2423.21-2025环境试验第2部分:试验方法试验M:低气压
- (2025)工会知识竞赛题库含参考答案
- 支气管哮喘临床课件
- 七夕餐厅营销活动方案策划
- 急诊课件胸痛
- 2025-2026学年北师大版(2024)小学数学三年级上册教学计划及进度表
- 企业员工激励奖励制度完整方案
- 2025医学基础知识试题(附答案)
- 电磁频谱管控策略-洞察及研究
- 2025年江苏省高考政治试题与参考答案
评论
0/150
提交评论