




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学一元二次不等式解法说课稿范文(8)说课的基本形式是“四大模块”模式,一般由说教材、说教法、说学法、说程序等部分构成。教师范文吧为大家准备一篇高中一元二次不等式解法说课稿范文8.39KB,希望给你说课写作带来参考。学无止境,高中是人生成长变化最快的阶段,所以应该用心去想,去做好每件事,中国教师范文吧()为大家整理了 高三数学说课稿:一元二次不等式解法 ,希望可以帮助到更多学子。高三数学说课稿:一元二次不等式解法、教材(一)教材的地位和作用 一元二次不等式解法 既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。(二)教学内容本节内容分2课时。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习 三个一次 的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找 三个二次 的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用 画、看、说、用 的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。二、教学目标分析根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:知识目标 理解 三个二次 的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。能力目标 通过看图象找解集,培养学生 从形到数 的转化能力, 从具体到抽象 、 从特殊到一般 的归纳概括能力。情感目标 创设问题情景,激发学生观察、分析、探求的学习激情、强生参与意识及主体作用。三、重难点分析一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法 图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为: 三个二次 的关系。要突破这个难点,让学生归纳 三个一次 的关系作铺垫。四、教法与学法分析(一)学法指导教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生 动手画、动眼看、动脑想、动口说、善提炼、勤钻研 的研讨式,这样做增加了学生自主参与,交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生 学 有新 思 , 思 有新 得 , 练 有新 获 ,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养 创新型 人才的需要。(二)教法分析本节课设计的指导思想是:现代认知学 建构主义学习理论。建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。本节课采用 诱思引探教学法 。把问题作为出发点,指导学生 画、看、说、用 。较好地探求一元二次不等式的解法。五、课堂设计本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。(一)创设情景,引出 三个一次 的关系本节课开始,先让学生解一元二次方程x2-x-6=0,如果我把 = 改成 则变成一元二次不等式x2-x-6 0让学生解,学生肯定感到很突然。但是 思维往往是从惊奇和疑问开始 ,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。为此,我设计了以下几个问题:1、请同学们解以下方程和不等式:2x-7=0;2x-7 2x-7 0学生回答,我板书。2、我指出:2x-7 0和2x-7 0的解实际上只需利用不等式基本性质就容易得到。3、接着我提出:我们能否利用不等式的基本性质来解一元二次不等式呢?学生可能感到很困惑。4、为此,我引入一次函数y=2x-7,借助动画从图象上直观认识方程和不等式的解,得出以下三组重要关系:2x-7=0的解恰是函数y=2x-7的图象与x轴交点的横坐标。2x-7 0的解集正是函数y=2x-7的图象在x轴的上方的点的横坐标的集合。2x-7 0的解集正是函数y=2x-7的图象在x轴的下方的点的横坐标的集合。三组关系的得出,实际上让学生找到了利用 一次函数的图象 来解一元一次方程和一元一次不等式的方法。让学生看到了解决一元二次不等式的希望,大大激发了学生解决新问题的兴趣。此时,学生很自然联想到利用函数y=x2-x-6的图象来求不等式x2-x-6 0的解集。(二)比旧悟新,引出 三个二次 的关系为此我引导学生作出函数y=x2-x-6的图象,按照 看一看说一说问一问 的思路进行探究。看函数y=x2-x-6的图象并说出:方程x2-x-6=0的解是x=-2或x=3;不等式x2-x-6 0的解集是x|x -2,或x 不等式x2-x-6 0的解集是x|-2此时,学生已经冲出了困惑,找到了利用二次函数的图象来解一元二次不等式的方法。学生沉浸在成功的喜悦中,不妨趁热打铁问一问:如果把函数y=x2-x-6变为y=ax2bxc(a 0),那么图象与x轴的位置关系又怎样呢?(学生回答: 0时,图象与x轴有两个交点;=0时,图象与x轴只有一个交点; 0时,图象与x辆没有交点。)请同学们讨论:ax2bxc 0与ax2bxc 0的解集与函数y=ax2bxc的图象有怎样的关系?(三)归纳提炼,得出 三个二次 的关系1、引导学生根据图象与x轴的相对位置关系,写出相关不等式的解集。2、此时提出:若a 0时,怎样求解不等式ax2bxc 0及ax2bxc 0?(经讨论之后,有的学生得出:将二次项系数由负化正,转化为上述模式求解,教师应予以强调;也有的学生提出画出相应的二次函数图象,根据图象写出解集,教师应给予肯定。)(四)应用新知,熟练掌握一元二次不等式的解集借助二次函数的图象,得到一元二次不等式的解集,学生形成了感性认识,为巩固所学知识,我们一起来完成以下例题:例1、解不等式2x2-3x-2 0解:因为 0,方程2x2-3x-2=0的解是x1=,x2=2所以,不等式的解集是x|x ,或x 2例1的解决达到了两个目的:一是巩固了一元二次不等式解集的应用;二是规范了一元二次不等式的解题格式。下面我们接着学习课本例2。例2解不等式-3x26x 2课本例2的出现恰当好处,一方面突出了 对于二次项系数是负数(即a 0)的一元二次不等式,可以先把二次项系数化为正数,再求解 另一方面,学生对此例的解答极易出现写错解集(如出现 或 与 且 的错误)。通过例1、例2的解决,学生与我一起了解一元二次不等式的一般步骤:一化正 二算 三求根 四写解集。例3解不等式4x2-4x1 0例4解不等式-x22x-3 0分别突出了 =0 、 0 对不等式解集的影响。这两例由学生练习,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情。4道例题,具有典型性、层次性和学生的可接受性。为了避免学生学后 一团乱麻 、 一盘散沙 的局面,我和学生一起总结。(五)总结解一元二次不等式的 四部曲 :(1)把二次项的系数化为正数(2)计算判别式 (3)解对应的一元二次方程(4)根据一元二次方程的根,结合图像(或口诀),写出不等式的解集。概括为:一化正 二算 三求根 四写解集(六)作业布置为了使所有学生巩固所学知识,我布置了 必做题 又为学有余力者留有自由发展的空间,我布置了 探究题 。(1)必做题:习题1.5的1、3题(2)探究题:若a、b不同时为零,记ax2bxc=0的解集为P,ax2bxc 0的解集为M,ax2bxc 0的解集为N,那么P M N=_;已知不等式(k24k-5)x24(1-k)x3 0的解集是R,求实数k的取值范围。(七)板书设计一元二次不等式解法(1)六、教学效果本节课立足课本,着力挖掘,设计合理,层次分明。以 三个一次关系 三个二次关系 一元二次不等式解法 为主线,以 从形到数,从具体到抽象,从特殊到一般 为灵魂,以 画、看、说、用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/IEC 23001-11:2023/Amd 2:2025 EN Information technology - MPEG systems technologies - Part 11: Energy-efficient media consumption (green metadata) - Amendment 2: Energy-e
- 应急安全教育培训制度课件
- 应急安全培训师课件
- 2025山东省肥城市中考数学能力检测试卷及答案详解(考点梳理)
- 2024-2025学年度反射疗法师大赛理论通关题库附答案详解【基础题】
- 买房煤气合同(标准版)
- 传染病疑似病例早期识别与护理观察要点
- 中药面膜合同(标准版)
- 2025年乐山马边彝族自治县事业单位考核招聘18人笔试备考题库及答案详解一套
- 2024年自考专业(汉语言文学)题库及参考答案详解【基础题】
- 2025年公安机关人民警察高级执法资格考试试卷(完整版)含答案
- 2025年铜化集团招聘笔试备考题库(带答案详解)
- 2025年国家基本药物目录培训
- 2025至2030中国桌面云行业发展趋势预判及市场前景预测报告
- 干眼基础试题及答案
- T/DZJN 118-2022废旧锂离子电池磷酸铁锂材料再生利用技术规范
- 艾灸治疗脾胃病的临床实践
- 资质代办合同协议书范本
- 2025年社区卫生服务岗位考试题及答案
- 古茗合同协议书
- 《蔚来汽车的SWOT分析》课件
评论
0/150
提交评论