2012各区一模导数总结.doc_第1页
2012各区一模导数总结.doc_第2页
2012各区一模导数总结.doc_第3页
2012各区一模导数总结.doc_第4页
2012各区一模导数总结.doc_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

东城示范(一模理)18.(本小题满分13分)已知函数: , (1) 当时,求的最小值; (2)当时,若存在,使得对任意的恒成立,求的取值范围.(东城示范一模文)18. (本题满分13分) 已知函数,.() 当时, 求函数的单调区间;() 当时,若任意给定的,在上总存在两个不同的,使 得成立,求的取值范围ks5u.co(朝阳一模理)18. (本小题满分13分) 设函数. ()当时,求曲线在点处的切线方程; ()求函数单调区间.(朝阳文)18. (本题满分14分)已知函数,.()若函数在时取得极值,求的值;()当时,求函数的单调区间.东城(一模理)(18)(本小题共14分)已知函数在处的切线斜率为零()求和的值;()求证:在定义域内恒成立;() 若函数有最小值,且,求实数的取值范围.(东城一模文)(18)(本小题共13分)已知是函数的一个极值点 ()求的值;()当,时,证明:(海淀一模理)(18)(本小题满分13分)已知函数.()求的单调区间;()是否存在实数,使得函数的极大值等于?若存在,求出的值;若不存(海淀一模文)(18)(本小题满分13分)已知函数. ()求的单调区间;()是否存在实数,使得对任意的,都有?若存在,求的取值范围;若不存在,请说明理由.丰台一模理18.(本小题共13分)已知函数()当a=1时,求曲线y=f(x)在点(1,f(1)处的切线方程;()当a0时,函数f(x)在区间1,e上的最小值为-2,求a的取值范围;()若对任意,且恒成立,求a的取值范围丰台一模文:18.(本小题共13分)已知函数 ()若曲线y=f(x)在(1,f(1)处的切线与直线x+y+1=0平行,求a的值;()若a0,函数y=f(x)在区间(a,a 2-3)上存在极值,求a的取值范围;()若a2,求证:函数y=f(x)在(0,2)上恰有一个零点(石景山一模理)18(本小题满分14分)已知函数. ()若函数的图象在处的切线斜率为,求实数的值; ()求函数的单调区间; ()若函数在上是减函数,求实数的取值范围.石景山一模文:18(本小题满分14分)已知函数. ()若函数的图象在处的切线斜率为,求实数的值; ()求函数的单调区间; ()若函数在上是减函数,求实数的取值范围.西城一模理18.(本小题满分13分)已知函数,其中.()当时,求曲线在点处的切线方程;()求的单调区间.西城一模文:19.(本小题满分13分)如图,抛物线与轴交于两点,点在抛物线上(点在第一象限),记,梯形面积为 ()求面积以为自变量的函数式;()若,其中为常数,且,求的最大值东城示范一模理(1).综上 当 时, 当 时 , 当时, 6分 (2) 若存在,使得对任意的恒成立,即 当时,由(1)可知,, 为增函数, ,当时为减函数, 13分东城示范一模文答案:(1)故函数的单调递增区间是;单调递减区间是(0,1). -6分(2)解得. 综上,a的取值范围为.朝阳理(18)(本小题满分13分)解:因为所以. ()当时, , 所以 . 所以曲线在点处的切线方程为. 4分()因为, 5分 (1)当时,由得;由得. 所以函数在区间单调递增, 在区间单调递减. 6分 (2)当时, 设,方程的判别式 7分 当时,此时. 由得,或; 由得. 所以函数单调递增区间是和, 单调递减区间. 9分 当时,此时.所以, 所以函数单调递增区间是. 10分 当时,此时. 由得; 由得,或. 所以当时,函数单调递减区间是和, 单调递增区间. 12分 当时, 此时,所以函数单调递减区间是. 13分朝阳文(18)(本小题满分14分)解:(). 2分依题意得,解得. 经检验符合题意. 4分 (),设,(1)当时,在上为单调减函数. 5分(2)当时,方程=的判别式为,令, 解得(舍去)或.1当时,即,且在两侧同号,仅在时等于,则在上为单调减函数. 7分2当时,则恒成立,即恒成立,则在上为单调减函数. 9分3时,令,方程有两个不相等的实数根,作差可知,则当时,在上为单调减函数;当时,在上为单调增函数;当时,在上为单调减函数. 13分综上所述,当时,函数的单调减区间为;当时,函数的单调减区间为,函数的单调增区间为. 14分东城一模理:(18)(共14分)()解:. 2分由题意有即,解得或(舍去)4分得即,解得 5分()证明:由()知, 在区间上,有;在区间上,有 故在单调递减,在单调递增,于是函数在上的最小值是 9分故当时,有恒成立 10分()解: 当时,则,当且仅当时等号成立,故的最小值,符合题意; 13分当时,函数在区间上是增函数,不存在最小值,不合题意;当时,函数在区间上是增函数,不存在最小值,不合题意综上,实数的取值范围是 14分东城一模文:(18)(共13分)()解:, 2分由已知得,解得 4分 当时,在处取得极小值所以. 5分()证明:由()知,. 当时,在区间单调递减; 当时,在区间单调递增. 8分所以在区间上,的最小值为,又,所以在区间上,的最大值为. 12分对于,有所以. 13分(海淀一模理)(18)(本小题满分13分)解:()的定义域为. ,即 . 2分令,解得:或. 当时,故的单调递增区间是. 3分当时,随的变化情况如下:极大值极小值所以,函数的单调递增区间是和,单调递减区间是.5分当时,随的变化情况如下:极大值极小值所以,函数的单调递增区间是和,单调递减区间是.7分()当时,的极大值等于. 理由如下: 当时,无极大值.当时,的极大值为, 8分令,即 解得 或(舍). 9分 当时,的极大值为. 10分因为 , 所以 .因为 ,所以 的极大值不可能等于. 12分综上所述,当时,的极大值等于.13分(海淀一模文)(18)(本小题满分13分)解:()的定义域为. . 2分当时,在区间上,. 所以 的单调递减区间是. 3分当时,令得或(舍).函数,随的变化如下:+0极大值所以 的单调递增区间是,单调递减区间是. 6分综上所述,当时, 的单调递减区间是;当时,的单调递增区间是,单调递减区间是.()由()可知:当时, 在上单调递减.所以在上的最大值为,即对任意的,都有. 7分当时, 当,即时,在上单调递减. 所以在上的最大值为,即对任意的,都有. 10分 当,即时,在上单调递增, 所以 .又 ,所以 ,与对于任意的,都有矛盾. 12分综上所述,存在实数满足题意,此时的取值范围是.13分丰台一模理:丰台一模文:石景山一模理:18(本小题满分14分)解:() 1分 由已知,解得. 3分(II)函数的定义域为.(1)当时, ,的单调递增区间为; 5分(2)当时. 当变化时,的变化情况如下:-+极小值 由上表可知,函数的单调递减区间是; 单调递增区间是. 8分 (II)由得,9分 由已知函数为上的单调减函数,则在上恒成立,即在上恒成立. 即在上恒成立. 11分令,在上,所以在为减函数. , 所以. 14分石景山一模文:18(本小题满分14分)解:() 1分 由已知,解得. 3分(II)函数的定义域为.(1)当时, ,的单调递增区间为;5分(2)当时. 当变化时,的变化情况如下:-+极小值 由上表可知,函数的单调递减区间是; 单调递增区间是. 8分 (II)由得,9分 由已知函数为上的单调减函数,则在上恒成立,即在上恒成立. 即在上恒成立. 11分令,在上,所以在为减函数. , 所以. 14分西城一模理:18.(本小题满分13分)()解:当时, 2分由于,所以曲线在点处的切线方程是 4分()解:, 6分 当时,令,解得 的单调递减区间为;单调递增区间为,8分当时,令,解得 ,或 当时,的单调递减区间为,;单调递增区间为, 10分 当时,为常值函数,不存在单调区间 11分 当时,的单调递减区间为,;单调递增区间为, 13分西城一模文:19.(本小题满分13分)()解:依题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论