第06章-ARCH和GARCH估计s.ppt.ppt_第1页
第06章-ARCH和GARCH估计s.ppt.ppt_第2页
第06章-ARCH和GARCH估计s.ppt.ppt_第3页
第06章-ARCH和GARCH估计s.ppt.ppt_第4页
第06章-ARCH和GARCH估计s.ppt.ppt_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 第六章条件异方差模型 EViews中的大多数统计工具都是用来建立随机变量的条件均值模型 本章讨论的重要工具具有与以往不同的目的 建立变量的条件方差或变量波动性模型 2 6 1自回归条件异方差模型自回归条件异方差 AutoregressiveConditionalHeteroscedasticityModel ARCH 模型是特别用来建立条件方差模型并对其进行预测的 ARCH模型是1982年由恩格尔 Engle R 提出 并由博勒斯莱文 Bollerslev T 1986 发展成为GARCH GeneralizedARCH 广义自回归条件异方差 这些模型被广泛的应用于经济学的各个领域 尤其在金融时间序列分析中 3 6 1 1ARCH模型为了说得更具体 让我们回到k 变量回归模型 6 1 1 如果ut的均值为零 对yt取基于 t 1 时刻的信息的期望 即Et 1 yt 有如下的关系 6 1 2 由于yt的均值近似等于式 6 1 1 的估计值 所以式 6 1 1 也称为均值方程 4 由于 6 1 7 中ut的方差依赖于前期的平方扰动项 我们称它为ARCH 1 过程 然而 容易加以推广 例如 一个ARCH p 过程可以写为 6 1 8 5 如果扰动项方差中没有自相关 就会有H0 这时从而得到扰动项方差的同方差性情形 恩格尔曾表明 容易通过以下的回归去检验上述虚拟假设 其中 t表示从原始回归模型 6 1 1 估计得到的OLS残差 6 6 1 2GARCH 1 1 模型我们常常有理由认为ut的方差依赖于很多时刻之前的变化量 特别是在金融领域 采用日数据或周数据的应用更是如此 这里的问题在于 我们必须估计很多参数 而这一点很难精确的做到 但是如果我们能够意识到方程 6 1 8 不过是 t2的分布滞后模型 我们就能够用一个或两个 t2的滞后值代替许多ut2的滞后值 这就是广义自回归条件异方差模型 generalizedautoregressiveconditionalheteroscedasticitymodel 简记为GARCH模型 在GARCH模型中 要考虑两个不同的设定 一个是条件均值 另一个是条件方差 7 在标准化的GARCH 1 1 模型中 6 1 11 6 1 12 其中 xt是1 k 1 维外生变量向量 是 k 1 1维系数向量 6 1 11 中给出的均值方程是一个带有扰动项的外生变量函数 由于 t2是以前面信息为基础的一期向前预测方差 所以它被称作条件方差 式 6 1 12 也被称作条件方差方程 8 6 1 12 中给出的条件方差方程是下面三项的函数 1 常数项 均值 2 用均值方程 6 1 11 的扰动项平方的滞后来度量从前期得到的波动性的信息 ut2 1 ARCH项 3 上一期的预测方差 t2 1 GARCH项 GARCH 1 1 模型中的 1 1 是指阶数为1的GARCH项 括号中的第一项 和阶数为1的ARCH项 括号中的第二项 一个普通的ARCH模型是GARCH模型的一个特例 即在条件方差方程中不存在滞后预测方差 t2 1的说明 9 方差方程的回归因子方程 6 1 12 可以扩展成包含外生的或前定回归因子z的方差方程 6 1 17 注意到从这个模型中得到的预测方差不能保证是正的 可以引入到这样一些形式的回归算子 它们总是正的 从而将产生负的预测值的可能性降到最小 例如 我们可以要求 10 高阶GARCH p q 模型高阶GARCH模型可以通过选择大于1的p或q得到估计 记作GARCH p q 其方差表示为 6 1 18 这里 p是GARCH项的阶数 q是ARCH项的阶数 11 6 1 3ARCH的检验 下面介绍检验一个模型的残差是否含有ARCH效应的两种方法 ARCHLM检验和残差平方相关图检验 1 ARCHLM检验Engle在1982年提出检验残差序列中是否存在ARCH效应的拉格朗日乘数检验 Lagrangemultipliertest 即ARCHLM检验 自回归条件异方差性的这个特殊的设定 是由于人们发现在许多金融时间序列中 残差的大小与最近的残差值有关 ARCH本身不能使标准的OLS估计无效 但是 忽略ARCH影响可能导致有效性降低 12 ARCHLM检验统计量由一个辅助检验回归计算 为检验原假设 残差中直到q阶都没有ARCH 运行如下回归 式中 t是残差 这是一个对常数和直到q阶的滞后平方残差所作的回归 这个检验回归有两个统计量 1 F统计量是对所有残差平方的滞后的联合显著性所作的一个省略变量检验 2 T R2统计量是Engle sLM检验统计量 它是观测值个数T乘以回归检验的R2 13 2 平方残差相关图显示直到所定义的滞后阶数的平方残差 t2的自相关性和偏自相关性 计算出相应滞后阶数的Ljung Box统计量 平方残差相关图可以用来检查残差自回归条件异方差性 ARCH 如果残差中不存在ARCH 在各阶滞后自相关和偏自相关应为0 且Q统计量应不显著 可适用于使用LS TSLS 非线性LS估计方程 显示平方残差相关图和Q 统计量 选择View ResidualTests CorrelogramSquaredResidual 在打开的滞后定义对话框 定义计算相关图的滞后数 14 例6 1沪市股票价格指数波动的GARCH模型为了检验股票价格指数的波动是否具有条件异方差性 本例选择了沪市股票的收盘价格指数的日数据作为样本序列 这是因为上海股票市场不仅开市早 市值高 对于各种冲击的反应较为敏感 因此 本例所分析的沪市股票价格波动具有一定代表性 在这个例子中 我们选择的样本序列 sp 是1998年1月3日至2001年12月31日的上海证券交易所每日股票价格收盘指数 为了减少舍入误差 在估计时 对 sp 进行自然对数处理 即将序列 log sp 作为因变量进行估计 15 由于股票价格指数序列常常用一种特殊的单位根过程 随机游动 RandomWalk 模型描述 所以本例进行估计的基本形式为 6 1 25 首先利用最小二乘法 估计了一个普通的回归方程 结果如下 6 1 26 15517 R2 0 994对数似然值 2871AIC 5 51SC 5 51 16 可以看出 这个方程的统计量很显著 而且 拟和的程度也很好 但是需要检验这个方程的误差项是否存在条件异方差性 17 图6 1股票价格指数方程回归残差 观察上图 该回归方程的残差 我们可以注意到波动的 成群 现象 波动在一些较长的时间内非常小 例如2000年 在其他一些较长的时间内非常大 例如1999年 这说明残差序列存在高阶ARCH效应 18 因此 对式 6 1 26 进行条件异方差的ARCHLM检验 得到了在滞后阶数p 3时的ARCHLM检验结果 此处的P值为0 拒绝原假设 说明式 6 1 26 的残差序列存在ARCH效应 还可以计算式 6 1 26 的残差平方的自相关 AC 和偏自相关 PAC 系数 结果如下 19 6 1 4ARCH M模型金融理论表明具有较高可观测到的风险的资产可以获得更高的平均收益 其原因在于人们一般认为金融资产的收益应当与其风险成正比 风险越大 预期的收益就越高 这种利用条件方差表示预期风险的模型被称为ARCH均值模型 ARCH in mean 或ARCH M回归模型 在ARCH M中我们把条件方差引进到均值方程中 6 1 29 ARCH M模型的另一种不同形式是将条件方差换成条件标准差 或取对数 20 ARCH M模型通常用于关于资产的预期收益与预期风险紧密相关的金融领域 预期风险的估计系数是风险收益交易的度量 例如 我们可以认为某股票指数 如上证的股票指数的票面收益 returet 依赖于一个常数项 通货膨胀率 t以及条件方差 风险 这种类型的模型 其中期望风险用条件方差表示 就称为GARCH M模型 21 在EViews中估计ARCH模型 估计GARCH和ARCH模型 首先选择Quick EstimateEquation或Object NewObject Equation 然后在Method的下拉菜单中选择ARCH 得到如下的对话框 22 一 均值方程 Meanequation 在因变量编辑栏中输入均值方程形式 均值方程的形式可以用回归列表形式列出因变量及解释变量 如果方程包含常数 可在列表中加入C 如果需要一个更复杂的均值方程 可以用公式的形式输入均值方程 如果解释变量的表达式中含有ARCH M项 就需要点击对话框右上方对应的按钮 EViews5 0中的ARCH M的下拉框中 有4个选项 1 选项None表示方程中不含有ARCH M项 2 选项Std Dev 表示在方程中加入条件标准差 3 选项Variance则表示在方程中含有条件方差 2 4 选项Log Var 表示在均值方程中加入条件方差的对数ln 2 作为解释变量 23 二 方差设定和分布设定 Varianceanddistributionspecification EViews5的选择模型类型列表 1 在下拉列表中选择所要估计的ARCH模型的类型 2 在Variance栏中 可以列出包含在方差方程中的外生变量 3 可以选择ARCH项和GARCH项的阶数 4 在Threshold编辑栏中输入非对称项的数目 缺省的设置是不估计非对称的模型 即该选项的个数为0 5 Error组合框是设定误差的分布形式 缺省的形式为Normal Gaussian 24 三 估计选项 Options EViews为我们提供了可以进入许多估计方法的设置 只要点击Options按钮并按要求填写对话即可 25 ARCH的估计结果利用GARCH 1 1 模型重新估计例6 1的式 6 1 25 结果如下 26 ARCH估计的结果可以分为两部分 上半部分提供了均值方程的标准结果 下半部分 即方差方程包括系数 标准误差 z 统计量和方差方程系数的P值 在方程 6 1 12 中ARCH的参数对应于 GARCH的参数对应于 在表的底部是一组标准的回归统计量 使用的残差来自于均值方程 注意如果在均值方程中不存在回归量 那么这些标准 例如R2也就没有意义了 27 例6 1利用GARCH 1 1 模型重新估计的方程如下 均值方程 23249 方差方程 5 27 11 49 33 38 R2 0 994D W 1 94对数似然值 3003AIC 5 76SC 5 74 28 方差方程中的ARCH项和GARCH项的系数都是统计显著的 并且对数似然值有所增加 同时AIC和SC值都变小了 这说明这个模型能够更好的拟合数据 再对这个方程进行条件异方差的ARCH LM检验 相伴概率为P 0 91 说明利用GARCH模型消除了原残差序列的异方差效应 ARCH和GARCH的系数之和等于0 982 小于1 满足参数约束条件 由于系数之和非常接近于1 表明一个条件方差所受的冲击是持久的 即它对所有的未来预测都有重要作用 这个结果在高频率的金融数据中经常可以看到 29 例6 2估计我国股票收益率的ARCH M模型选择的时间序列仍是1998年1月3日至2001年12月31日的上海证券交易所每日股票价格收盘指数 sp 股票的收益率是根据公式 re ln spt spt 1 即股票价格收盘指数对数的差分计算出来的 ARCH M模型 re t ut 30 31 估计出的结果写成方程 均值方程 2 72 3 00 方差方程 5 43 12 49 29 59 对数似然值 3007AIC 5 77SC 5 74在收益率方程中包括 t的原因是为了在收益率的生成过程中融入风险测量 这是许多资产定价理论模型的基础 均值方程假设 的含义 在这个假设下 应该是正数 结果 0 27 因此我们预期较大值的条件标准差与高收益率相联系 估计出的方程的所有系数都很显著 并且系数之和小于1 满足平稳条件 均值方程中 t的系数为0 27 表明当市场中的预期风险增加一个百分点时 就会导致收益率也相应的增加0 27个百分点 32 ARCH模型的视图与过程 一旦模型被估计出来 EViews会提供各种视图和过程进行推理和诊断检验 一 ARCH模型的视图1 Actual Fitted Residual窗口列示了各种残差形式 2 条件SD图显示了在样本中对每个观测值绘制向前一步的标准偏差 t t时期的观察值是由t 1期可得到的信息得出的预测值 3 协方差矩阵4 系数检验5 残差检验 相关图 Q 统计量 33 二 ARCH模型的过程1 构造残差序列将残差以序列的名义保存在工作文件中 可以选择保存普通残差ut或标准残差ut t 残差将被命名为RESID1 RESID2等等 可以点击序列窗口中的name按钮来重新命名序列残差 2 构造GARCH方差序列将条件方差 t2以序列的名义保存在工作文件中 条件方差序列可以被命名为GARCH1 GARCH2等等 取平方根得到如View ConditionalSDGragh所示的条件标准偏差 34 3 预测例3假设我们估计出了如下的ARCH 1 采用Marquardt方法 模型 ARCH CPI方程中加入CPI做解释变量 留下2001年10月 2001年12月的3个月做检验性数据 35 使用估计的ARCH模型可以计算因变量的静态的和动态的预测值 和它的预测标准误差和条件方差 为了在工作文件中保存预测值 要在相应的对话栏中输入名字 如果选择了Dogragh选项EViews就会显示预测值图和两个标准偏差的带状图 36 估计期间是1 03 1998 9 28 2001 预测期间是10 02 2001 12 31 2001左图表示了由均值方程和SP的预测值的两个标准偏差带 37 38 6 2非对称ARCH模型 在资本市场中 经常可以发现这样的现象 资产的向下运动通常伴随着比之程度更强的向上运动 为了解释这一现象 Engle和Ng 1993 绘制了好消息和坏消息的非对称信息曲线 波动性0信息 39 本节将介绍3种能够描述这种非对称冲击的模型 TARCH模型 EGARCH模型和PARCH模型 估计TARCH模型 EViews5要在Threshold选项中填 1 表明有1个非对称项 可以有多个 其他的选项与GARCH模型的选择相似 40 6 2 1TARCH模型TARCH或者门限 Threshold ARCH模型由Zakoian 1990 和Glosten Jafanathan Runkle 1993 独立的引入 条件方差指定为 6 2 1 其中 dt 1是虚拟变量 当ut0 和坏消息 ut0 我们说存在杠杆效应 非对称效应的主要效果是使得波动加大 如果 0 则非对称效应的作用是使得波动减小 41 例6 3货币政策对物价影响的非对称效应分析由于货币政策及其它政策的实施力度以及时滞导致经济中出现了不同于货币政策开始实施阶段的条件因素 导致货币政策发生作用的环境发生了变化 此时 货币政策在产生一般的紧缩或者是扩张的政策效应基础上 还会产生一种特殊的效应 我们称之为 非对称 效应 表现在经济中 就是使得某些经济变量的波动加大或者变小 本例使用1991年第一季度至2003年第一季度的数据建立了通货膨胀率 t 的TARCH模型 均值方程 方差方程 42 变量的选取 采用居民消费物价指数 CPI 上年同期 100 减去100代表通货膨胀率 t 货币政策变量选用狭义货币供应量M1的增长率 M1Rt 银行同业拆借利率 7天 R7t 使用银行同业拆借利率代替存款利率 是由于目前我国基本上是一个利率管制国家 中央银行对利率直接调控 因此名义存款利率不能够反映市场上货币供需的真实情况 全国银行间同业拆借市场于1996年1月成立 1996年7天以内的同业拆借的比重为28 78 而2001年已上升为82 23 所以用同业拆借利率代表金融市场的市场化的利率 模型中解释变量还包括货币流通速度 Vt Vt GDPt M1t 通货膨胀率的1期滞后 t 1 代表预期通货膨胀 43 44 由TARCH模型的回归方程和方差方程得到的估计结果为 2 62 25 53 5 068 3 4 1 64 1 152 0 94 3 08 3 9 R2 0 96D W 1 83结果表中的 RESID ARCH 1 项是 6 2 1 式的 也称为TARCH项 在上式中 TARCH项的系数显著不为零 说明货币政策的变动对物价具有非对称效应 需要注意 方差方程中 0 399 即非对称项的系数是负的 这就说明 货币政策对于通货膨胀率的非对称影响是使得物价的波动越来越小 45 观察残差图 还可以发现货币政策的非对称作用在不同阶段对通货膨胀率表现是不同的 在经济过热时期 如1992年 1994年期间 通过均值方程中货币政策变量的紧缩作用 导致了货币政策对通货膨胀的减速作用非常明显 但是由于通货膨胀率方程的残差非常大 由方差方程可知这一时期物价波动很大 但 t 0 则dt 1 0 所以TARCH项不存在 即不存在非对称效应 1995年 1996年初 t 0 则TARCH项存在 且其系数 是负值 于是非对称效应使得物价的波动迅速减小 当处于经济增长的下滑阶段 它的残差只在零上下波动 虽然出现负值比较多 但这一时期的货币政策非对称扩张作用非常小 46 对于高阶TARCH模型的制定 EViews将其估计为 6 2 2 6 2 2EGARCH模型 EGARCH或指数 Exponential GARCH模型由纳尔什 Nelson 1991 提出 条件方差被指定为 6 2 5 等式左边是条件方差的对数 这意味着杠杆影响是指数的 而不是二次的 所以条件方差的预测值一定是非负的 杠杆效应的存在能够通过 0的假设得到检验 如果 0 则冲击的影响存在着非对称性 47 例6 4股票价格波动的TARCH模型和EGARCH模型那么在我国的股票市场运行过程当中 是否也存在股票价格波动的非对称性呢 利用沪市的股票收盘价格指数数据 我们估计了股票价格波动的两种非对称模型 结果分别如下 TARCH模型 均值方程 19679 方差方程 5 55 7 63 5 31 45 24 对数似然值 3009AIC 5 77SC 5 75 48 49 杠杆效应项由结果中的RESID 1 2 RESID 1 0 描述 它是显著为正的 所以存在非对称影响 在TARCH模型中 杠杆效应项的系数显著大于零 说明股票价格的波动具有 杠杆 效应 利空消息能比等量的利好消息产生更大的波动 当出现 利好消息 时 即当 t 0时 有一个的冲击 而出现 利空消息 时 即当 t 0时 则会带来的冲击 50 EGARCH模型 均值方程 19897 8 方差方程 7 26 9 69 5 64 122 43 对数似然值 3020 3AIC 5 79SC 5 76 51 52 这个例子中 利空消息能比等量的利好消息产生更大的波动的结果在EGARCH模型中也能够得到印证 在EGARCH模型中 其非对称项 的系数小于零 当 t 0时 有一个倍的冲击 当 t 0时 有一个倍冲击 此例中 是负的并在统计上是显著的 这表明在样本期间沪市的股票收盘价格指数中存在杠杆效应 53 6 3成分ARCH模型 ComponentARCHModel GARCH 1 1 模型将条件方差设定为 6 3 1 令其中 是非条件方差或长期波动率 6 3 1 变为 6 3 2 表示了均值趋近于 这个 在所有时期都为常数 54 成分ARCH模型允许均值趋近于一个变动的水平qt 6 3 3 6 3 4 此处 t仍然是波动率 而qt代替了 它是随时间变化的长期变动 6 3 3 描述了暂时成分 t2 qt 它将随 的作用收敛到零 6 3 4 描述了长期成分qt它将在 的作用下收敛到 典型的 在0 99和1之间 所以qt缓慢的接近 55 在暂时方程中还可以引入非对称影响 称为非对称的成分ARCH模型 它的条件方差方程的形式为 6 3 6 6 3 7 其中z是外生变量 d是虚拟变量 表示负的冲击 当ut 1 0时 dt 1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论