




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
分母有理化方法集锦吕广军二次根式分母有理化是初中代数的重要内容,也是同学们的难点,本文介绍几种有理化方法。供同学们学习时参考。一. 常规基本法例1. 化简解:原式评注:这是最基本最常用的方法,解法的关键是准确判断分母的有理化因式。二. 分解约简法例2. 化简解:原式评注:分母提取“公因式”后可直接约分,避免分母有理化,从而简化运算。例3. 化简解:原式评注:由于的有理化因式可能为零,所以不能将分子分母同乘以;若分两种情况讨论又比较繁琐。注意到本题的结构特征,故改用“分解因式”约简的方法,达到分母有理化而又避免讨论。例4. 化简解:评注:注意到7可分拆为4+3,与可配成,从而与分母约分而获得巧解,避繁就简。例5. 化简.解:原式评注:把1转化为,再用平方差公式“因式分解”即能约分。三. 巧用通分法例6. 化简解:原式评注:注意到本题两“项”互为倒数,且分母互为有理化因式的结构特征,故采用直接通分,同时又达到了分母有理化的效果,使化简更为简捷。四. 裂项约简法例7. 化简解:原式评注:裂项是本题的关键,做题时要善于观察、分析,找到解题最佳途径。例8. 化简解:将原式分子、分母颠倒后就转化为例6。故原式评注:本题解法中,先计算原式的倒数,明显方便多了。五. 等比性质法例9. 化简解:评注:若用常规方法,分子、分母同乘以分母的有理化因式则计算比较繁杂且易出错,注意到本题的结构特征,可用等比性质巧解。年级初中学科数学版本期数内容标题分母有理化方法集锦分类索引号G.622.46分类索引描述辅导与自学主题词分母有理化方法集锦栏目名称学法指导供稿老师审稿老师录入韩素果一校二校审核从前面的例子可以看出,函数及函数(其中, 为常数,且,)的周期仅与自变量的系数有关。那么,如何用自变量的系数表示上述函数的周期呢?事实上,令,那么必须并且只需,且函数的周期都是,由于,所以自变量只要并且至少要增加到,函数值才能重复出现,即是使等式 成立的最小正数,从而
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年专业解读仲裁委员会对仲裁员素质要求及面试预测题分析
- 2025年中小学教育心理学基础知识考试模拟题与答案详解
- 2025年中国注册生物工程师面试必-备知识与模拟题解答
- 2025年飞机翻修或D级检修合作协议书
- 2025年灌封胶项目合作计划书
- 2025年桨扇发动机项目合作计划书
- 抢救柜药品课件
- 2025年传染病防治兽药项目发展计划
- 辽宁省2025-2026学年高三上学期9月份联合考试物理试卷B版
- 2025年3-〔(4-氨基-3-甲氧苯基)偶氮〕苯磺酸项目发展计划
- 第十三章 内能(新课预习 培优卷)(含答案)2025-2026学年人教版九年级全一册物理
- 高中物理学科教学装备配置方案
- 初中物理科学家传记与贡献解读
- 安全生产责任制(模板)
- 高二班主任心理健康指导计划
- 安全防护文明施工措施
- 少儿跳绳培训班课程体系
- 教学质量分析与教学反思改进教学
- 碳纤维行业培训课件
- 2025至2030中国无针注射系统行业发展趋势分析与未来投资战略咨询研究报告
- 感染性休克护理
评论
0/150
提交评论