




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.1简单几何体 学习目标 1. 感受空间实物及模型,增强学生的直观感知;2. 理解多面体与旋转体的有关概念;3. 能概述圆柱、圆锥、圆台台体、球的结构特征;4. 会用语言概述棱柱、棱锥、棱台的结构特征.5. 能描述一些简单组合体的结构. 学习过程 一:多面体的相关概念问题:观察下面的物体,注意它们每个面的特点,以及面与面之间的关系.你能说出它们相同点吗?定义:由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,如面ABCD;相邻两个面的公共边叫多面体的棱,如棱AB;棱与棱的公共点叫多面体的顶点,如顶点A.具体如下图所示:顶点棱面 ( 1 )二:旋转体的相关概念 问题:仔细观察下列物体的相同点是什么?定义轴:由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫旋转体,这条定直线叫旋转体的轴.如下图的旋转体:三、几种旋转体的概念及结构特征1:圆柱的结构特征问题:观察下面的旋转体,你能说出它们是什么平面图形通过怎样的旋转得到的吗? 定义;以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体,叫做圆柱(circular cylinder),旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线,如图所示:圆柱用表示它的轴的字母表示,图中的圆柱可表示为.圆柱和棱柱统称为柱体.圆柱的性质: 两底面是平行且半径相等的圆 侧面展开图是矩形 母线平行且相等 平行与底面的截面与两底面是平行且半径相等的圆 轴截面是矩形2:圆锥的结构特征问题:下图的实物是一个圆锥,与圆柱一样也是平面图形旋转而成的. 仿照圆柱的有关定义,你能定义什么是圆锥以及圆锥的轴、底面、侧面、母线吗?试在旁边的图中标出来. 定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫圆锥.圆锥也用表示它的轴的字母表示.棱锥与圆锥统称为锥体.圆锥的性质: 底面为圆面 侧面展开图是扇形 母线交于顶点 平行于底面的截面是平行底面且与底面半径还不相等的圆3:圆台的结构特征问题:下图中的物体叫做圆台,也是旋转体.它是什么图形通过怎样的旋转得到的呢?除了旋转得到以外,对比棱台,圆台还可以怎样得到呢? 定义;直角梯形以垂直于底边的腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫圆台(frustum of a cone).用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分也是圆台. 圆台和圆柱、圆锥一样,也有轴、底面、侧面、母线,请你在上图中标出它们,并把圆台用字母表示出来. 棱台与圆台统称为台体.反思:结合结构特征,从变化的角度思考,圆台、圆柱、圆锥三者之间有什么关系?圆台的性质: 两底面是平行但半径不相等的圆 侧面展开图是扇环 母线延长线交于一点 平行于底面的截面是与两底面平行且半径不相等的圆 轴截面是等腰梯形圆柱、圆锥的轴截面:过圆柱或圆锥轴的平面与圆柱或圆锥相交得到的平面形状,通常圆柱的轴截面是矩形,圆锥的轴截面是三角形.4:球的结构特征问题:球也是旋转体,怎么得到的?定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体(solid sphere),简称球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径;球通常用表示球心的字母表示,如球.球的性质: 用一平面去截球截面为圆面 球心与截面圆心的连线垂直于不过球心的截面 设球的半径威R,截面圆面半径为r,球心到截面距离为d,则d=四:几种多面体的概念及结构特征1、 棱柱问题:你能归纳下列图形共同的几何特征吗? 定义:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱(prism).棱柱中,两个互相平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.(两底面之间的距离叫棱柱的高)分类:按底面多边形的边数来分,底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱按照侧棱是否和底面垂直,棱柱可分为斜棱柱(不垂直)和直棱柱(垂直).特殊的四棱柱:平行六面体,直平行六面体,长方体,正四棱柱,正方体1. 平行六面体:底面是平行四边形的四棱柱;2. 直平行六面体3.长方体4.正棱柱:5.正方体棱柱的性质: 各侧面是平行四边形,侧棱平行且相等 直棱柱各侧面是矩形,正棱柱各侧面是全等矩形 棱柱的两底面与平行底面的截面是对应边互相平行的全等多边形 过棱柱不相邻两侧棱的截面是平行四边形2:棱锥定义:有一个面是多边形,其余各个面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.顶点到底面的距离叫做棱锥的高;棱锥也可以按照底面的边数分为三棱锥(四面体)、四棱锥等等,棱锥可以用顶点和底面各顶点的字母表示,如下图中的棱锥.棱锥的性质: 底面为多边形,侧面为三角形 各侧棱相交于顶点 平行与底面的截面是与底面相似的多边形 过不相邻两侧棱的截面是三角形5:棱台定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分形成的几何体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面.其余各面是棱台的侧面,相邻侧面的公共边叫侧棱,侧面与两底面的公共点叫顶点.两底面间的距离叫棱台的高.棱台可以用上、下底面的字母表示,分类类似于棱锥.请在下图中标出棱台的底面、侧面、侧棱、顶点,并指出其类型和用字母表示出来.棱台的性质: 两底面是相似多边形 各侧面是梯形 各侧棱延长线交于一点 平行于底面的截面是与两底面相似的多边形 过不相邻的两侧棱的截面是梯形6.正棱柱:底面是正多边形的直棱柱;7. 正棱锥:底面是正多边形并且顶点在底面的射影是底面正多边形中心的棱锥;8. 正棱台:由正棱锥截得的棱台叫做正棱台.典型例题例1:下列叙述正确的有 (1)以直角三角形的一边为轴旋转所得的旋转体是圆锥.(2)以直角梯形的一腰为轴旋转所得的的几何体是圆台.(3)圆柱、圆锥、圆台的底面都是圆.(4)用一个平面去截圆锥,得到一个圆锥和一个圆台.(5)在圆柱的上,下两底面的圆周上各取一点,这两点的连线是圆柱的母线.(6)圆锥的顶点与底面圆周上任一点的连线是圆锥的母线练习:由棱柱的定义你能得到棱柱下列的几何性质吗?侧棱都相等,侧面都是平行四边形;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形.仿照棱柱,棱锥、棱台有哪些几何性质呢?例2右图绕虚线旋转一周后形成的立体图形,是由那些简单几何体构成的?【规律方法总结】_变式训练:下图是由哪些简单几何体组合而成?例 ,右边模型,回答下列问题:(1)观察长方体模型,有多少对平行平面?能作为棱柱底面的有多少对?(2) 如右图,长方体中被截去一部分,其中。问剩下的几何体是什么?截去的几何体是什么(3)观察六棱柱模型,有多少对平行平面?能作为棱柱底面的有多少对?例、如果两个面互相平行,其余各面均为四边形的几何体一定是棱柱这种说法是否正确?如果正确说明理由;如果不正确,举出反例 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 三边长分别为3、4、5,绕着其中一边旋转得到圆锥,对所有可能描述不对的是( ). A.是底面半径3的圆锥 B.是底面半径为4的圆锥C.是底面半径5的圆锥 D.是母线长为5的圆锥2. 下列命题中正确的是( ).A.直角三角形绕一边旋转得到的旋转体是圆锥B.夹在圆柱的两个平行截面间的几何体是旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线3. 一个球内有一内接长方体,其长、宽、高分别为5、4、3,则球的直径为( ).A. B. C. D.4. 已知,ABCD为等腰梯形,两底边为AB,CD.且ABCD,绕AB所在的直线旋转一周所得的几何体中是由 、 、 的几何体构成的组合体.5. 圆锥母线长为,侧面展开图圆心角的正弦值为,则高等于_. 课后作业 1. 如图,是由等腰梯形、矩形、半圆、倒形三角对接形成的轴对称平面图形,若将它绕轴旋转后形成一个组合体,下面说法不正确的是_A.该组合体可以分割成圆台、圆柱、圆锥和两个球体B.该组合体仍然关于轴对称C.该组合体中的圆锥和球只有一个公共点D.该组合体中的球和半球只有一个公共点2. 用一个平面截半径为的球,截面面积是,则球心到截面的距离为多少?三【合作、探究、展示】 【规律方法总结】_四【达标训练】1、下列命题中正确的是( ).A.直角三角形绕一边旋转得到的旋转体是圆锥B.夹在圆柱的两个平行截面间的几何体是旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线2如图所示的平面结构,绕中间轴旋转一周后,形成的几何体形状为( )A.一个球体 B.一个球体中间挖去一个圆柱C.一个球体中间挖去一个棱柱 D.一个圆柱 3.如图(1),是由右边哪个平面图形旋转得到的( )4.下列命题:(1)过球面上任意两点只能作一个球大圆.(球大圆是以球心为圆心,球半径为半径的圆) (2)连接球的任意两个大圆的交点的线段是球的直径.(3)球面可以看成是到球心的距离等于球半径的所有点的集合.其中正确的有( ) .5.以等腰三角形底边的垂直平分线为旋转轴,将各边绕轴旋转1800形成的曲面所围成的几何体是 .五【课后练笔】1.说出下列几何体的结构特征.2.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到右侧的平面图形,则标“”的面得方位是( )A.南 B.北 C.西 D.下 知识拓展 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 一个多边形沿不平行于矩形所在平面的方向平移一段距离可以形成( ).A棱锥 B棱柱 C平面 D长方体2. 棱台不具有的性质是( ). A.两底面相似 B.侧面都是梯形C.侧棱都相等 D.侧棱延长后都交于一点3. 已知集合A=正方体,B=长方体,C=正四棱柱,D=直四棱柱,E=棱柱,F=直平行六面体,则().A.B.C.D.它们之间不都存在包含关系4. 长方体三条棱长分别是=1=2,则从点出发,沿长方体的表面到C的最短矩离是_.5. 若棱台的上、下底面积分别是25和81,高为4,则截得这棱台的原棱锥的高为_. 课后作业 1. 已知正三棱锥S-ABC的高SO=h,斜高(侧面三角形的高)SM=n,求经过SO的中点且平行于底面的截面A1B1C1的面积.四【达标训练】1、下列选项中不是正方体表面展开图的是 ( )2下列关于简单几何体的说法中:(1)斜棱柱的侧面中不可能有矩形;(2)有两个面互相平行,其余各面都是平行四边形的多面体是棱柱;(3)侧面是等腰三角形的棱锥是正棱锥;(4)圆台也可看成是圆锥被平行于底面的平面所截得截面与底面之间的部分。其中正确的是_3、有两个面互相平行,其他面都是四边形,则这个几何体是 ( )A、棱柱 B、棱台 C、棱柱或棱台 D、以上答案都不对4、若棱锥的所有棱长均相等,则它一定不是 ( ) A、三棱锥 B、四棱锥 C、五棱锥 D、六棱锥五【课后练笔】1.如图几何体,关于其结构特征,下列说法不正确的是( )A.该几何体是由两个同底的四棱锥组成的几何体.B.该组合体有12条棱,6个顶点.C.该组合体有8个面,各面均为三角形.D.该组合体有9个面,其中一个面为四边形,其余8个面为三角形.2. 在边长为正方形ABCD中,E、F分别为AB、BC的中点,现在沿DE、DF及EF把ADE、CDF和BEF折起,使A、B、C三点重合,重合后的点记为.问折起后的图形是个什么几何体?它每个面的面积是多少?F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届云南省开远市第二中学校化学高三第一学期期末达标测试试题含解析
- 职业病防治知识培训新闻课件
- 2025年康复医学患者康复计划制定考核试题答案及解析
- 重冶净液工协同作业考核试卷及答案
- 职业暴露防护知识培训课件
- 混合料工适应性考核试卷及答案
- 移动LBS(基于位置的服务)营销创新创业项目商业计划书
- 股票交易自动化平台创新创业项目商业计划书
- 鱼糜制作工基础考核试卷及答案
- 解析卷-云南省文山市中考数学真题分类(位置与坐标)汇编同步测评试卷(详解版)
- GB/T 18608-2012原油和渣油中镍、钒、铁、钠含量的测定火焰原子吸收光谱法
- 核电质量保证-质量体系培训课件
- DB61-T 1587-2022家政服务员沟通服务规范
- 满堂脚手架方案
- DB32T 4353-2022 房屋建筑和市政基础设施工程档案资料管理规程
- 改造工程电气工程施工组织设计方案
- T∕CGSS 004-2019 适老营养配方食品通则
- 非计划再次手术制度
- 碳碳复合材料课件
- 辽宁医院明细.xls
- 火电厂输煤系统培训讲义(PPT54页)
评论
0/150
提交评论