




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
化学通报 2006 年 第69 卷 w012ABS 树脂无卤成炭阻燃机理陈力 鲁成祥 蔡绪福*(四川大学高分子科学与工程学院 四川成都 610065)摘 要 对近10 年来有关ABS 无卤成炭阻燃的研究现状和应用前景作了介绍,包括高沸点酸脱水成炭、基体树脂接枝成炭、硅胶-碳酸钾体系成炭、陶瓷先驱体聚合体系成炭、粘土纳米复合体系成炭共5 大体系,并对各体系进行了比较分析,着重讨论了各体系的成炭阻燃机理,以期为ABS 无卤成炭阻燃体系的研究开发提供一些启示。关键词 ABS 成炭 阻燃 机理The Mechanism of Char-forming Flame-retardation of ABSChen Li, Lu Chengxiang, Cai Xufu*(Department of Polymer Science and Engineering, Sichuan University, Chengdu 610065)Abstract The research developments and major results in the fields of char-forming flame retardant(CFFR) systems about ABS at this decade were reviewed. Five important systems, including dehydration ofhigh-boiling acid, grafting, silica gel-potassium carbonate, preceramic polymer filling, andpolymer-inorganic nanocomposites as well as their application prospect had been investigated. Besides,char-forming mechanism of each CFFR system had been discussed.Key words Acrylonitrile-butadiene-styrene, Char-forming, Flame retardation, MechanismABS 树脂,是丙烯腈(A)/丁二烯(B)/苯乙烯(S)的三元共聚物或丙烯腈/苯乙烯的共聚物与苯乙烯/丁二烯共聚物的掺混物,是最重要的热塑性工程塑料之一,其可单独使用,也可与许多热塑性或热固性工程塑料制成具有某些特殊性能的聚合物合金,应用极为广泛。由于ABS 树脂是易燃的高分子材料,燃烧时释放出大量的有毒气体和黑烟,这不仅会造成严重的财产损失,还会给人们的生命安全和生存环境带来极大威胁。所以ABS 及其合金阻燃化改性倍受关注1,2。目前,ABS 树脂及其合金的阻燃体系包括含卤阻燃体系,有机含磷、氮、硅阻燃体系以及无机阻燃体系(包括红磷阻燃和无机氢氧化物)等的阻燃。卤系阻燃剂优异的阻燃性能、低廉的价格是其显著优点。长期以来,ABS 及其合金的阻燃研究主要集中在溴系阻燃剂和三氧化二锑体系上,如十溴联苯醚、四溴双酚A、八溴醚、溴代环氧树脂齐聚物等与三氧化二锑联用,可达到良好的阻燃效果,并已实现工业化。但自1986 年瑞士科学家首次报道了多溴联苯醚阻燃剂在燃烧时会产生多溴代二噁烷和多溴代苯并呋喃二者都属于国际癌症中心(IARC)所列的致癌物质范畴,在欧洲已经明令禁止以来,诸如多溴二苯醚等溴系阻燃剂的毒性引起了全世界的普遍关注,阻燃剂无卤化的呼声也越来越高,发展低毒少烟、高效绿色的无卤阻燃产品也就成为近年来阻燃领域的重要研究课题之一35。与此同时,全球三家最主要的溴系阻燃剂生产公司(Albemarle 公司、Great陈力 男,24 岁,硕士生,现从事ABS 及其合金无卤阻燃研究。* 联系人,E-mail: 2005-08-10 收稿,2005-09-15 接受 化学通报 2006 年 第69 卷 w0122Lake 公司、Dead Sea Bromine 公司)也开始转向无卤阻燃剂的开发,并已有少量商品供应。这三家公司的转向也标志着阻燃剂品种的战略性转变6,7。1 成炭阻燃体系及其机理炭的生成对抑制基体聚合物热降解和提高其阻燃性能有着重要的作用。成炭率高的高分子聚合物,其极限氧指数(LOI)较高,成炭率达40%50%的高聚物,其LOI 值可高于30%。在高聚物热氧降解的同时必然会伴随有小分子挥发物的产生,而生成炭可以从一定程度上减少挥发物的生成。如纤维素,它可在一连串的脱水反应中产生水、二氧化碳和炭,同时也可于转变左旋葡聚糖时一步降解为可燃性气体810。从反应动力学而言,第一种形式的反应比第二种产生的热量要少,且进一步的反应相对较为困难。此外炭的生成会影响体系下一步的热降解:它在聚合物表面形成粘附的绝缘炭层时,此炭层就会使聚合物与火焰隔绝,从而使进一步的热降解变得困难。而且相对于一般高聚物而言,炭的燃烧是一个困难的过程,其本身LOI 高达65%。高聚物降解形成的典型炭层是石墨化过程中的非晶炭,而石墨化的程度影响炭层的可燃性,若炭层中除炭外还含有无机组分,则热稳定性会更高11。部分常见高聚物的成炭率与LOI 值如下表1 所示11。基材成炭率越高,其LOI 值越大。目前,成炭阻燃体系及机理主要有:(1)高沸点酸脱水成炭;(2)基体树脂接枝成炭;(3)硅胶碳酸钾体系成炭;(4)陶瓷先驱体聚合体系成炭;(5)黏土纳米复合体系成炭等。以下就这几种无卤成炭阻燃体系的阻燃机理进行一般性的阐述。表1 常见高聚物的成炭率a 与LOI 的关系Tab.1 Effects of char-forming efficiencies on limit oxygen indices of some commercial polymers聚合物 成炭率/% LOI/% C/Cob/%聚甲醛(POM) 0.0 15.0聚丙烯(PP) 0.0 17.0聚苯乙烯(PS) 0.0 18.0ABS 0.0 18.0 c聚氯乙烯(PVC) 23.9 45.0 96.2聚碳酸酯(PC) 24.0 27.0聚苯醚(PPO) 29.0 31.0酚醛树脂(PF) 60.4 35.0 76.4a 在氮气氛中于700850炭化;b C/Co 为炭层中碳量与原高聚物中碳量之比,称为转化率;c ABS 的LOI 值因厂家和牌号而异,一般在17.818.5 之间2 磷酸酯/盐及其复合体系添加成炭体系磷酸酯/盐及其复合体系添加成炭隶属于有机磷系阻燃机理,这类阻燃剂可同时在凝聚相及气相发挥阻燃作用。凝聚相阻燃机理包括;含磷有机化合物受热解生成磷的含氧酸及其某些聚合酸,这类酸能催化含羟基化合物吸热脱水成炭反应,生成水等小分子挥发分和焦炭,大部分磷则残留于炭层中,这种石墨状炭层难燃、隔氧、使燃烧窒息;同时,焦炭层导热性能差,使基材传递的热量减少,并最终减缓基材的热分解;与此同时,羟基脱水反应既吸收大量的热,使燃烧物质降温,生成的水蒸气又稀释了空气中的氧及可燃气体的浓度,也有助于使燃烧中断。气相阻燃机理包括:有机磷系阻燃剂热解所形成的气态产物中含有PO自由基,它可以捕获H自由基 化学通报 2006 年 第69 卷 w0123及OH自由基,致使火焰中的H及OH浓度大大下降,从而起到抑制燃烧链式反应的作用12。对ABS 及其合金(如ABS/PC,PC 为聚碳酸酯)来说,磷酸酯如二磷酸间苯二酚酯(RDP)、磷酸三苯酯(TPP)等都是ABS 树脂及其合金行之有效含磷阻燃剂,尤以TPP 应用最为广泛。众多报道指出,TPP 能够在自身热降解过程中产生磷酸,并且在磷酸产生过程中生成焦磷酸(PPA),而PPA 在凝聚相中扮演热转化能垒的角色13;同时生成的磷酸衍生物从基材或添加组分中脱水成炭。对于纯的ABS 树脂,因为其中不含含氧官能团,当用含磷阻燃剂处理时,燃烧几乎不形成炭化膜,阻燃作用不明显;另外,TPP 及其同类物的挥发温度比ABS 的加工温度低很多,这会导致在加工ABS 时TPP 大量挥发,使材料无法达到预期的阻燃效果14。而对于ABS/PC 合金来说,TPP 与PC 能通过磷酸酯键和碳酸酯键的酯交换作用改变热降解途径,促进PC 成炭,在合金表面形成炭层起到阻燃作用,提高了阻燃效率。为了提高有机磷阻燃剂对ABS 树脂的阻燃效率,主要可以通过两种途径达到:一是通过选用成炭协效剂复配并抑制TPP 在加工过程中的挥发损失,使ABS 燃烧时在成炭剂的作用下生成炭层,保护下层基质不继续燃烧、不产生熔滴、抑制生烟量、减少有毒黑烟的生成;另一个是选用比TPP 挥发温度高很多的低聚磷酸酯与成炭剂联用。在第一种方法中,线型酚醛清漆树脂是被研究得最多的15。关于其阻燃机理,有些报告指出,是因为TPP 与酚醛树脂之间发生反应并提高其挥发温度14,16,17,从而有效抑制前者的挥发并达到阻燃的效果;除此之外,在主要的热降解过程中,体系可以通过酚醛树脂重排得到的缩聚物作为成炭剂辅助生成炭层,从而提高阻燃效果。除了酚醛树脂,环氧树脂(EP)也可以作为成炭剂使用。Lee 等18使用不同环氧值的三种环氧树脂,与TPP 协同加入ABS以制得一系列ABS/TPP/EP共混体系并研究发现,环氧值越高,体系LOI 值就越高。通过对热降解残渣的红外分析,该课题组认为较高LOI 的获得主要是由于环氧树脂热降解产生的羧酸与TPP 发生酯交换作用提高含磷化合物挥发温度,并通过苯醚、苯酯的生成利于形成热稳定性炭层所致19,20。在第二种方法中,低聚芳基磷酸酯是在工业上应用最广泛的。另一种磷酸酯,二磷酸四-2,6-二甲基苯基间苯二酚酯(DMP-RDP),拥有比TPP 高得多的挥发温度,可以满足ABS 树脂的加工要求15。但在实际应用过程中仍要添加成炭协效剂以实现ABS 的成炭膨胀阻燃。3 接枝成炭体系通过接枝共聚提高高聚物的成炭率,是改善材料的热稳定性、阻燃性的有效技术措施。因为接枝单体可以在聚合物的降解温度下成炭,在聚合物表面形成粘附的隔离层,从而对聚合物进行有效的热保护。根据阻燃机理,要求接枝单体即成炭物的降解温度必须与聚合物的降解温度相匹配,炭层必须在聚合物显著分解之前形成。目前主要用于ABS 的接枝方式有化学引发接枝和光敏化接枝21。在光敏化接枝共聚中,通常以蒽为光敏化剂,选用甲基丙烯酸钠或丙烯酸钠为单体。具体工艺过程是将丙烯酸或甲基丙烯酸接枝至ABS 上,再用氢氧化钠处理以将接枝共聚物转变为钠盐,但只能部分转化。通过试验比较,高温处理比低温处理成盐的转化率较高。蒽的用量、辐照时间、 化学通报 2006 年 第69 卷 w0124溶液中单体浓度及溶液温度等因素直接影响ABS 的接枝共聚程度。接枝共聚后,通过TGA 试验可以发现,ABS 上的甲基丙烯酸钠接枝层能形成一个粘着且隔热的炭层,炭层包括碳酸钠以及单质碳,该炭层对基质材料具有粘附性,其热绝缘作用可以对基质聚合物的热降解起保护作用,使相当大部分ABS 保留在热裂后的残余物中。如果没有这样一个接枝层,大部分ABS 将在热作用下挥发或热裂。TGA/FT-IR 分析表明,ABS 接枝后,聚合物整体均被保护,接枝发生于ABS 的丁二烯部分,但加入的单体包覆了整个聚合物,能保护此三元聚合物的所有组分。另外,通过研究证明,甲基的存在能提高单体对基材的粘着性,使接枝层不但与基质聚合物间存在化学键合,而且使甲基与聚合物间具有以范德华力引起的相互作用,所以,用甲基丙烯酸钠盐比用丙烯酸钠盐的稳定效果要好。在化学引发接枝共聚中,通常使用过氧化苯甲酰(BPO)作为引发剂,在氯仿溶液中进行。接枝共聚完成之后,其阻燃机理与光敏化接枝后的一样。另外,无论是光敏化接枝还是化学引发接枝,单体在ABS 中的溶解度在接枝过程中非常重要,随着温度升高,溶解度升高,接枝程度也升高。同时有文献指出,向苯乙烯树脂中引入磺酸基、氰基、硼酸酯基、硅烷基11,22,23都能显著提高炭化率、提高材料阻燃性。反应方程式如下所示:* n BuLiTMEDA* nLiSiMe2Cl2* nSiMe2Cl交联*n* Hg(OCOCF3)2*n*Hg(OCOCF3)*n* H2OCF3COOH CF3COOHO OBHO OB*n*HO OHB图1 苯乙烯树脂接枝硅烷基、硼酸酯基反应式Fig.1 Illustrational reactions of grafting of polystyrene同样机理亦可应用于ABS 树脂接枝阻燃体系。4 硅胶-碳酸钾体系(SG-PC)成炭体系最初使用硅胶-碳酸钾体系是为了研究在燃烧中通过原位反应形成有效硅系阻燃物质以达到阻燃的目的。此类研究结果表明,硅胶与羟基化合物在有金属氢氧化物存在的情况下能产生有机硅配位化合物,通过连接多羟基高聚物(例如PVA 以及纤维素)和硅胶-碳酸钾可以形成交联聚合物,还可以帮助形成SiOC 型的保护炭层,可能反应式如下所示。而硅胶-碳酸钾体系对于 化学通报 2006 年 第69 卷 w0125ABS 来说是在凝聚相中起阻燃作用的,与上述机理不同的是,ABS 不是羟基聚合物,无法通过配位键形成交联体系。根据有关研究表明,在燃烧表面下的热降解高聚物的凝聚相中,K2CO3通过碱催化氧化交联ABS 三元共聚物中的丁二烯形成交联高聚物,在燃烧过程中形成硅酸钾玻璃层,这个无机玻璃层可以作为表面阻隔层,能减慢并且阻隔挥发性分解气体的逸出,从而提高ABS 的阻燃性能24。SiOOOHOOHOMOH O OH图2 多羟基高聚物和硅胶-碳酸钾形成交联聚合物Fig.2 Pentacoordinate organosilicate crosslinked polyhydroxylated polymer5 陶瓷先驱体聚合体系(PCP)成炭近来,为提高ABS 基材的成炭能力,科研工作者将聚合物基材与一些陶瓷先驱体聚合物,如聚碳硅烷(PCS)、聚硅苯乙烯(PSS)、聚倍半硅氧烷(POSS)等制成共混体系。研究表明,PCP 的加入对于基材成炭率的提高和热释放速率的降低有明显效果,从而使基材阻燃性能得到增强。下面给出部分PCP 结构和性能23,2528。SiHCH3nPolycarbosilane, PCSSiPhCH3Polysilstyrene, PSSnSiSiSiSiSiSiSiSiO OOOOO OOOOOO nSiSiSiHSiSiSiSiSiO OOOOOOOOOOOO(a)n(b)Si SiSiSiSiSiSiSiOOOOOOOOOO OOSi SiSiSiSiSiSiSiOOOOOOOOOO OO(c) 化学通报 2006 年 第69 卷 w0126SiSiSiSi SiSiSi SiOOOO OOOO OOOOSiSiSiSiSiSiSiSiO OOOOO OOOOOOSiSiSiSiSiSiSiSiO OOOOO OOOOOOSiSiSiSi SiSiSi SiOOOO OOOO OOOO(d)POSS 结构示意图:(a)悬挂式结构;(b)AB 复式串珠结构;(c)ABA 嵌段结构;(d)星型结构SiSiSiHSiSiSiSiSiO OOOOOOOOOORRRRRO OOHnRSiROOSiOSiOSiOHSi O O ROSiOSiORHO HO HOOHSilsesquioxaneR图3 部分陶瓷先驱体聚合物分子结构图26,27,29Fig.3 Molecular architectures of some preceramic polymers26,27,29表2 一些常见PCP 性能参数27, 29Tab.2 Properties of some ordinary PCPPCP Tm/ 成炭率/%PCS 199 74PSS 148 79SSO(Me, Ph) 125 82研究表明24,28,PCP 的加入可明显提高基材成炭率,但并不影响材料气相燃烧过程,因为材料的有效燃烧热(EHC)、比消光面积(SEA)及CO 生成量与纯聚合物相差无几。这说明PCP 共混体系阻燃性来自材料燃烧过程中形成的陶瓷残余物的保护作用,而非凝聚相中炭的保留。6 聚合物-无机纳米复合体系(PIN)成炭聚合物-无机物纳米复合体系(PIN)包括聚合物-黏土纳米复合体系(PCN)和聚合物-层状硅酸盐复合体系(PLN)。当PIN中无机物含量为3(wt)%5(wt)%时,即可通过纳米材料极大的比表面积而产生一系列效应,使其具有较常规聚合物填料复合材料无法比拟的优点30,尤其是这类材料的耐热性和阻燃性,表现为热释放速率的降低和成炭率的提高29,31。同时,以PIN作为阻燃 化学通报 2006 年 第69 卷 w0127材料,不仅可达到部分使用场所要求的阻燃级别,而且能够保持甚至改善聚合物基材原有的优良性能,这就在很大程度上克服了以传统方法来赋予材料阻燃性能必须以牺牲或降低材料一些力、化学属性为代价的弊端。常用于ABS 无机纳米复合体系阻燃研究的无机材料主要是蒙脱土(MMT)。研究表明3034,ABS/MMT 体系可燃性的降低,并不是由于较多可燃物保留在基材中,而是由于以纳米形态分散于ABS 基材中的MMT 薄片在体系热氧降解过程中定量转化成空间上更均一稳定的炭层所致,降解形成的插层结构抑制了残余炭层的第二步降解,在降低体系分解速率的同时提高ABS 基材的阻燃性能。以上三种成炭体系均为聚合物与不同填料形成的复合体系,其复合可用下图示意:图4 不同聚合物复合体系示意图26,27Fig.4 Schematic representations of different hybrid polymers26,27参考文献1 R C Nametz, R J Nulph. USP: 3,965,214.2 S R Owen, J F Harper. Polym. Degrad. Stab., 1999, 64(3): 449455.3 C C Lutes, M J Charles, R M Kamens. Chemosphere, 1992, 25(1-2): 99102.4 G E Zaikov, S M Lomakin. J. Vinyl. Additive Tech., 1999, 5(1): 1220.5 G J Van Esch. Environmental Health Criteria 218-Flame Retardants: Tris(2-butoxyethyl)phosphate, tris(2-Ethylhexyl)-phosphate andTetrakis-(hydroxylme -thyl)phosphonium Salts. Geneva: WHO, 2000.6 欧育湘. 化工进展 1999, 18(6): 2932.7 陈力,蔡绪福,任显诚. 塑料, 2005, 34(2): 1825.8 Y Tsuchiya, K Sumi. J. Appl. Polym. Sci., 1970, 14(8): 20032013.9 M Goto, O Hortacsu, B J McCoy. Ind. Eng. Chem. Res., 1990, 29(7): 10911095.10 R Ball, A C McIntosh, J Brindley. Combust. Theory Model., 2004, 8(2): 281291.11 王永强. 塑料助剂, 2002, 2: 1118.12 李小丽,李滨. 高分子材料科学与工程, 2005, 21(1): 4851.13 J W Hastie, C L McBee. National Bureau of Standards IR, 1975.14 L Costa, R L Di Montelera, G Camino et al. J. Appl. Polym. Sci., 1998, 68(7): 10671076. 化学通报 2006 年 第69 卷 w012815 K Lee, K Yoon, J Kim et al. Polym. Degrad. Stab., 2003, 81(1): 173179.16 C A Fyfe, M S McKinnon, R Rudin et al. Macromolecules, 1983, 16(7): 12161219.17 M S Chetan, R S Ghadage, C R Rajan et al. J. Appl. Polym. Sci., 1993, 50(4): 685692.18 K Lee, J Kim, J Bae et al. Polymer, 2002, 43(8): 22492253.19 R T Conley. Thermal Stability of Polymers. New York: Marcel Dekker, 1970.20 L Costa, R L Di Montelera, G Cam
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年木材加工、处理机械项目申请报告
- 水龙吟-苏轼课件
- 机电设备安装调试与验收方案
- 水粉插画基础知识培训课件
- 混凝土施工中预应力钢筋张拉技术方案
- 基础设施施工工艺优化
- 混凝土施工的临时设施搭建与管理方案
- 城镇集中供热的用户需求与服务管理方案
- 水痘和腮腺炎培训课件
- 用户体验设计42课件
- 2025年3到6岁幼儿发展指南考试试题及答案
- 2025年光伏施工安全试题及答案
- 翻越您的浪浪山新学期开学第一课+课件
- 宏图煤矿防突设计2025.9.8
- 贵州航空产业城集团股份有限公司,贵州安立航空材料有限公司招聘笔试题库2025
- 奇瑞购销协议书范本
- 社区模拟试题和答案
- 银行测试管理办法
- 2025年技师(二级)养老护理员职业技能鉴定《理论知识》真题卷(后附答案和解析)
- 境外常驻人员管理办法
- 2025至2030中国城市地下管线探测行业发展状况与投资策略分析报告
评论
0/150
提交评论