全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
若干个顶点(vertex)以及某些顶点对之间的边(edge)就构成了一个图(graph)。如果图 G 和图 H 的顶点数相同,并且它们的顶点之间存在着某种对应关系,使得图 G 中的两个顶点之间有边,当且仅当图 H 中的两个对应顶点之间有边,我们就说图 G 和图 H 是同构的(isomorphism)。直观地说,两个图是同构的,意思就是它们本质上是同一个图,虽然具体的画法可能不一样。下面的两个图就是同构的。其中一种顶点对应关系是: 1 a, 2 c, 3 d, 4 b, 5 e, 6 g, 7 h, 8 f 。目前,人们还没有找到任何高效的算法,能迅速判断出两个图是否同构。在普通计算机上,判断两个图是否同构,这需要花费大量的时间。因此,人们经常以图的同构为例,来解释复杂度理论和现代密码学中的诸多概念。假设你家里的计算机十分强大,能很快判断出两个图是否同构,还能在两个图确实同构的情况下,给出一种顶点对应关系。但你的同桌家里的计算机却非常弱,没法做什么大型运算。课堂上,老师向全班展示了两个很复杂的图,不妨把它们叫作图 G 和图 H 。老师布置了一个特别的选做题:判断出这两个图是否同构。每个同学都可以提交答案,答案里只需要写“是”或者“不是”即可。按时提交答案并答对者,期末考试会获得 5 分加分;按时提交答案但答错了的,期末考试成绩将会倒扣 30 分;不参与此活动的同学,期末考试既不加分也不扣分。显然,每个同学都不敢随意提交答案,除非百分之百地能保证自己获得的答案是正确的。回到家后,借助家里的超级计算机,你很快判断出了这两个图是同构的。你给你的同桌发送了信息:“我已经算出来了,这两个图是同构的。”但是,你的同桌却回复说:“你不会是骗我的吧?”你打算怎样说服他,这两个图确实是同构的呢?你只需要把两个图的顶点对应关系发送给他即可。他家里的计算机非常弱,没法找出满足要求的顶点对应关系。但若有了一个顶点对应关系,验证其确实满足要求,这是非常容易的,几乎不需要什么计算量只需要枚举图 G 里的顶点对,看看它们之间有边是否当且仅当图 H 中的对应顶点之间有边即可。完成验证之后,他就知道了,这两个图确实是同构的。总结起来,刚才我们面对的是这样的困境: 你拥有无限的计算能力。 对方的计算能力非常有限。 你想要向对方证明,图 G 和图 H 确实是同构的。判断两个图是否同构可能很难,但若给出一段证据后,很容易验证两个图确实同构,上述困境也就得以解决了。这就是复杂度理论中 NP 问题的大致意思。但是,如果把两个图同构的证据直接交给你的同桌,你的同桌或许又会用同样的办法去帮助别人,最后搞得班上所有人都获得了加分,这就没意思了。有没有办法说服你的同桌,这两个图确实是同构的,但却又让他无法拿到这两个图同构的证据呢?也就是说,现在我们面对的是这样的困境: 你拥有无限的计算能力。 对方的计算能力非常有限。 你想要向对方证明,图 G 和图 H 确实是同构的。 你不想泄露这两个图的顶点之间的对应关系。这看上去似乎是不可能实现的不把顶点之间的对应关系告诉对方,怎样说服对方两个图确实是同构的呢?然而,这竟然是能做到的。整个过程分为很多轮进行。在每一轮里,你随机生成一个与图 G 同构的图 G 。如果图 G 和图 H 真的同构,那显然图 G 也与图 H 同构。然后,你把图 G 发送给对方。对方可以随机提出下面两个要求之一:提供 G 与 G 同构的证据,或者提供 G 与 H 同构的证据。不管对方提出的是哪个要求,你都可以放心大胆地把证据发给对方,这不会泄露图 G 和图 H 之间的对应关系。另外,如果图 G 和图 H 不是同构的,那么这两个要求你不可能都做得到;面对对方的抽查,总能如约作答的概率是很低很低的。很多轮过去后,对方便慢慢确信,图 G 和图 H 真的是同构的了。在现代密码学中,让对方相信命题的正确性,但又不泄露任何其他的信息,这就叫作“零知识证明”(zero-knowledge proof)。现在,让我们再来看一种情境。去掉上述第四点要求,但把第三点要求改一下: 你拥有无限的计算能力。 对方的计算能力非常有限。 你想要向对方证明,图 G 和图 H 确实是不同构的。你打算怎么办?注意,你的办法应该普遍适用于一切情况。在某些特定的情况下,你当然可以告诉对方,“这两个图显然不同构,因为它们的边数就不一样多”,但这不适用于两个图的边数一样多的情况。很简单。每次让对方随机生成一个与图 G 同构的图或者与图 H 同构的图,并把它发送给你。每次你都可以准确地告诉对方,刚才发来的图是从图 G 变过来的,还是从图 H 变过来的。多试几次,对方便能确信,这两个图确实是不一样的。上述所有例子都属于“交互式证明”(interactive proof)。第一个例子是确定性的交互式证明(deterministic interactive proof)。它也是最简单的一类交互式证明。第二个例子则是带有附加条件的交互式证明。也就是说,零知识证明是一种特殊的交互式证明。第三个例子则表明,对于有些问题来说,交互式证明的存在性并不是显然的(即使没有任何附加条件)。如果利用确定性的交互式证明,你能向别人说明问题的答案是肯定的,我们就说这个问题属于 dIP 集合。很容易证明, dIP = NP 。如果利用交互式证明(包括非确定性的交互式证明),你能向别人说明问题的答案是肯定的,我们就说这个问题属于 IP 集合。交互式证明理论的一个最主要的结论就是 IP = PSPACE ,其中 PSPACE 表示所有能用多项式的空间解决的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 权益分配协议书
- 借款协议书三方协议书
- 加工厂协议书
- 2025-2026学年安徽省马鞍山市初一地理上册期中考试试卷及答案
- 新生儿科普宣教
- 2025版风湿性关节炎常见症状及护理心得分享
- 2025版皮肤炎常见症状及护理措施
- 过敏体质宝宝营养
- 咽喉梗阻急救处理方法
- 2025版慢性阻塞性肺病常见症状及护理
- 恬谈人生:夏培肃传
- 棚户区改造梁侧预埋悬挑脚手架设计计算书
- 《浅谈幼儿园劳动教育实施策略》 论文
- 抗菌药物使用管理制度
- 基于《中国高考评价体系》下的2023年高考物理命题趋势及复习备考策略
- 经外周静脉穿刺中心静脉置管术
- GB/T 13452.2-2008色漆和清漆漆膜厚度的测定
- 远程会诊登记本
- 高速公路改扩建工程施工作业指导书
- 多旋翼无人机培训教材课件
- 高新技术企业(科技型中小企业)专题培训课件
评论
0/150
提交评论