BP神经网络实验.doc_第1页
BP神经网络实验.doc_第2页
BP神经网络实验.doc_第3页
BP神经网络实验.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

例一、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。样本数据:输入X输出D输入X输出D输入X输出D-1.0000-0.9602-0.30000.13360.40000.3072-0.9000-0.5770-0.2000-0.20130.50000.3960-0.8000-0.0729-0.1000-0.43440.60000.3449-0.70000.37710-0.50000.70000.1816-0.60000.64050.1000-0.39300.8000-0.3120-0.50000.66000.2000-0.16470.9000-0.2189-0.40000.46090.3000-0.09881.0000-0.3201解:看到期望输出的范围是,所以利用双极性Sigmoid函数作为转移函数。程序如下:clear;clc;X=-1:0.1:1;D=-0.9602 -0.5770 -0.0729 0.3771 0.6405 0.6600 0.4609. 0.1336 -0.2013 -0.4344 -0.5000 -0.3930 -0.1647 -.0988. 0.3072 0.3960 0.3449 0.1816 -0.312 -0.2189 -0.3201;figure;plot(X,D,*); %绘制原始数据分布图(附录:1-1)net = newff(-1 1,5 1,tansig,tansig);net.trainParam.epochs = 100; %训练的最大次数net.trainParam.goal = 0.005; %全局最小误差net = train(net,X,D); O = sim(net,X); figure; plot(X,D,*,X,O); %绘制训练后得到的结果和误差曲线(附录:1-2、1-3)V = net.iw1,1%输入层到中间层权值theta1 = net.b1%中间层各神经元阈值W = net.lw2,1%中间层到输出层权值theta2 = net.b2%输出层各神经元阈值所得结果如下:输入层到中间层的权值: 中间层各神经元的阈值: 中间层到输出层的权值: 输出层各神经元的阈值:例二、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。样本数据:输入X输出D输入X输出D输入X输出D00448211539322621043371解:看到期望输出的范围超出,所以输出层神经元利用线性函数作为转移函数。程序如下:clear; clc;X = 0 1 2 3 4 5 6 7 8 9 10;D = 0 1 2 3 4 3 2 1 2 3 4;figure;plot(X,D,*); %绘制原始数据分布图(附录:2-1)net = newff(0 10,5 1,tansig,purelin)net.trainParam.epochs = 100;net.trainParam.goal=0.005;net=train(net,X,D);O=sim(net,X);figure;plot(X,D,*,X,O); %绘制训练后得到的结果和误差曲线(附录:2-2、2-3)V = net.iw1,1%输入层到中间层权值theta1 = net.b1%中间层各神经元阈值W = net.lw2,1%中间层到输出层权值theta2 = net.b2%输出层各神经元阈值所得结果如下:输入层到中间层的权值:中间层各神经元的阈值: 中间层到输出层的权值: 输出层各神经元的阈值:例三、以下是上证指数2009年2月2日到3月27日的收盘价格,构建一个三层BP神经网络,利用该组信号的6个过去值预测信号的将来值。日期价格日期价格2009/02/022011.6822009/03/022093.4522009/02/032060.8122009/03/032071.4322009/02/042107.7512009/03/042198.1122009/02/052098.0212009/03/052221.0822009/02/062181.2412009/03/062193.0122009/02/092224.7112009/03/092118.7522009/02/102265.1612009/03/102158.5722009/02/112260.8222009/03/112139.0212009/02/122248.0922009/03/122133.8812009/02/132320.7922009/03/132128.8512009/02/162389.3922009/03/162153.2912009/02/172319.4422009/03/172218.3312009/02/182209.8622009/03/182223.7312009/02/192227.1322009/03/192265.7612009/02/202261.4822009/03/202281.0912009/02/232305.7822009/03/232325.4812009/02/242200.6522009/03/242338.4212009/02/252206.5722009/03/252291.5512009/02/262121.2522009/03/262361.7012009/02/272082.8522009/03/272374.44解:clear;clc;D1=2011.682 2060.812 2107.751 2098.021 2181.241 2224.711. 2265.161 2260.822 2248.092 2320.792 2389.392 2319.442. 2209.862 2227.132 2261.482 2305.782 2200.652 2206.572. 2121.252 2082.852 2093.452 2071.432 2198.112 2221.082. 2193.012 2118.752 2158.572 2139.021 2133.881 2128.851. 2153.291 2218.331 2223.731 2265.761 2281.091 2325.481. 2338.421 2291.551 2361.701 2374.44;D = premnmx(D1)%数据归一化把数据化到-1,1范围内Q=length(D);count = 1:1:Q;X=zeros(6,0);X(1,2:Q)=D(1,1:(Q-1);X(2,3:Q)=D(1,1:(Q-2);X(3,4:Q)=D(1,1:(Q-3);X(4,5:Q)=D(1,1:(Q-4);X(5,6:Q)=D(1,1:(Q-5);X(6,7:Q)=D(1,1:(Q-6);figure;plot(count,D,count,D,*); %绘制原始数据分布图(附录:3-1)net = newff(minmax(X),7 1,tansig,tansig)net.trainParam.epochs = 100;net.trainParam.goal=0.005;net=train(net,X,D);O=sim(net,X);figure;plot(count,D,*,count,O,r); %绘制训练后得到的结果和误差曲线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论