




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
注重导数与其它知识交汇,凸现导数工具性作用湖南祁东育贤中学 周友良 匡宗春 421600知识的纵横联系必然形成知识网络的交汇,近年来“强调基础、能力立意、在知识网络交汇点处设计试题”已经成为最近两年高考试题的主要特色. 导数与函数、不等式、数列等知识的交汇在近年高考命题中更受到命题专家的亲睐.1. 导数与函数、方程的交汇.例1(06福建卷)已知是二次函数,不等式的解集是且在区间上的最大值是12。(I)求的解析式;(II)是否存在实数使得方程在区间内有且只有两个不等的实数根?若存在,求出的取值范围;若不存在,说明理由。解:(I)当即时,在上单调递增,当即时,当时,在上单调递减,综上,(II)函数的图象与的图象有且只有三个不同的交点,即函数的图象与轴的正半轴有且只有三个不同的交点。当时,是增函数;当时,是减函数;当时,是增函数;当或时,当充分接近0时,当充分大时,要使的图象与轴正半轴有三个不同的交点,必须且只须即所以存在实数,使得函数与的图象有且只有三个不同的交点,的取值范围为点评:本小题主要考查函数的单调性、极值、最值等基本知识,考查运用导数研究函数性质的方法,考查运算能力,考查函数与方程、数形结合、分类与整合等数学思想方法和分析问题、解决问题的能力。2. 导数与函数、不等式的交汇.例2(06湖北卷)设是函数的一个极值点。()、求与的关系式(用表示),并求的单调区间;()、设,。若存在使得成立,求的取值范围。解:()f (x)x2(a2)xba e3x,由f (3)=0,得 32(a2)3ba e330,即得b32a,则f (x)x2(a2)x32aa e3xx2(a2)x33a e3x(x3)(xa+1)e3x.令f (x)0,得x13或x2a1,由于x3是极值点,所以x+a+10,那么a4.当a3x1,则在区间(,3)上,f (x)0,f (x)为增函数;在区间(a1,)上,f (x)4时,x23x1,则在区间(,a1)上,f (x)0,f (x)为增函数;在区间(3,)上,f (x)0时,f (x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,那么f (x)在区间0,4上的值域是min(f (0),f (4) ),f (3),而f (0)(2a3)e30,f (3)a6,那么f (x)在区间0,4上的值域是(2a3)e3,a6.又在区间0,4上是增函数,且它在区间0,4上的值域是a2,(a2)e4,由于(a2)(a6)a2a()20,所以只须仅须(a2)(a6)0,解得0a0知在上的最大值为即: 又由当时, 取得最小值为由三角形ABC有一条边平行于x轴知AC平行于x轴,所以又由三角形ABC的面积为得利用b=a+d,c=a+2d,得联立(1)(2)可得点评:本小题考查了函数的导数,函数的极值的判定,闭区间上二次函数的最值,等差数基础知识的综合应用,考查了应用数形结合的数学思想分析问题解决问题的能力4. 导数与函数、不等式、数学归纳法的交汇.例5.(06湖南卷)已知函数,数列满足:证明:(); ().证明: (I)先用数学归纳法证明,1,2,3, (i).当n=1时,由已知显然结论成立. (ii).假设当n=k时结论成立,即.因为0x0成立.于是故点评:本题以函数为载体,以导数为工具,将不等式、数列、数学归纳法合理融合,创造了新的命题情景,同时使函数、导数、不等式与数列等知识在整合过程中均得到了进一步的升华. 例6. (06陕西卷)已知函数f(x)=x3x2+ + , 且存在x0(0, ) ,使f(x0)=x0. (I)证明:f(x)是R上的单调增函数;设x1=0, xn+1=f(xn); y1=, yn+1=f(yn), 其中n=1,2,(II)证明:xnxn+1x0yn+1yn; (III)证明: 0 , f(x)是R上的单调增函数(II)0x0 , 即x1x0y1又f(x)是增函数, f(x1)f(x0)f(y1)即x2x00 =x1, y2=f(y1)=f()=y1,综上, x1x2x0y2y1用数学归纳法证明如下:(1)当n=1时,上面已证明成立(2)假设当n=k(k1)时有xkxk+1x0yk+1yk 当n=k+1时,由f(x)是单调增函数,有f(xk)f(xk+1)f(x0)f(yk+1)f(yk),xk+1xk+2x0yk+2yk+1由(1)(2)知对一切n=1,2,都有xnxn+1x0yn+1yn(III) = = yn2+xnyn+xn2(yn+xn)+ (yn+xn)2(yn+xn)+ =(yn+xn)2+ 由()知 0yn+xn1 yn+xn , ()2+ = 5.导数与函数、不等式、数列的交汇.例7.(06浙江卷)已知函数,数列x(x0)的第一项x1,以后各项按如下方式取定:曲线x=f(x)在处的切线与经过(0,0)和(x,f (x))两点的直线平行(如图)求证:当n时,()x ()证明:(I)因为所以曲线在处的切线斜率因为过和两点的直线斜率是所以.(II)因为函数当时单调递增,而,所以,即因此又因为令则因为所以因此 故点评:本题主要考查函数的导数、数列、不等式等基础知识,以及不等式的证明,同时考查逻辑推理能力。6. 导数与实际性应用题的交汇.例8.(06江苏卷)请您设计一个帐篷。它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如右图所示)。试问当帐篷的顶点O到底面中心的距离为多少时,帐篷的体积最大?解:设OO1为x m,则由题设可得正六棱锥底面边长为(单位:m)于是底面正六边形的面积为(单位:m2)帐篷的体积为(单位:m3)求导数,得令解得x=-2(不合题意,舍去),x=2.当1x2时,,V(x)为增函数;当2x4时,,V(x)为减函数。所以当x=2时,V(x)最大。答当OO1为2m时,帐篷的体积最大。点评:本小题主要考查利用导数研究函数的最大值和最小值的基础知识,以及运用数学知识解决实际问题的能力。例9.(06福建卷)统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:y=(0x120).已知甲、乙两地相距100千米。()当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?()当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?本小题主要考查函数、导数及其应用等基本知识,考查运用数学知识分析和解决实际问题的能力。满分12分。解:(I)当时,汽车从甲地到乙地行驶了小时,要耗没(升)。答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升。(II)当速度为千米/小时时,汽车从甲地到乙地行驶了小时,设耗油量为升,依题意得令得当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 出租膨化设备合同范本
- 线上生活体验课程合同
- 采购合同范本壁布
- 审计招投标合同范本
- 单位清洁服务合同范本
- 钻机维修合同范本
- 亨廷顿病舞蹈样动作护理查房
- 买卖房协议合同范本
- 拍摄微电影合同范本
- 小型船舶建造合同范本
- 复发性流产护理
- 2025年西藏自治区事业单位招聘考试教师招聘体育学科专业知识试卷(模拟试题)
- 先天性甲状腺功能减退症诊治指南解读课件
- 2025至2030中国裸眼3D行业产业运行态势及投资规划深度研究报告
- 检修安全监护管理制度
- 产科工作管理制度
- 初中历史教师业务考试试题及答案
- 导尿管相关尿路感染预防与控制试题(附答案)
- 中医烧伤课件
- 2025-2030中国水下混凝土行业市场发展趋势与前景展望战略研究报告
- GB/T 30134-2025冷库管理规范
评论
0/150
提交评论