2011考研大纲解析及配套强化指导超级峰会——数学大纲变化对比表(数三,线代部分).doc_第1页
2011考研大纲解析及配套强化指导超级峰会——数学大纲变化对比表(数三,线代部分).doc_第2页
2011考研大纲解析及配套强化指导超级峰会——数学大纲变化对比表(数三,线代部分).doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2011年与2010年考研数学大纲变化对比表数三线性代数四、线性方程组2010年数学考试大纲考试内容和考试要求考试内容 线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解 考试要求 1.会用克莱姆法则解线性方程组 2.掌握非齐次线性方程组有解和无解的判定方法 3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法 4.理解非齐次线性方程组解的结构及通解的概念 5.掌握用初等行变换求解线性方程组的方法 2011年数学考试大纲考试内容和考试要求考试内容 线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解 考试要求 1.会用克莱姆法则解线性方程组 2.掌握非齐次线性方程组有解和无解的判定方法 3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法 4.理解非齐次线性方程组解的结构及通解的概念 5.掌握用初等行变换求解线性方程组的方法 对比:无变化五、矩阵的特征值和特征向量2010年数学考试大纲考试内容和考试要求考试内容 矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵 考试要求 1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法 2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法 3.掌握实对称矩阵的特征值和特征向量的性质 2011年数学考试大纲考试内容和考试要求考试内容 矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵 考试要求 1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法 2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法 3.掌握实对称矩阵的特征值和特征向量的性质 对比:无变化六、二次型2010年数学考试大纲考试内容和考试要求考试内容 二次型及其矩阵表示 合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性 考试要求 1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念 2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形 3.理解正定二次型、正定矩阵的概念,并掌握其判别法 2011年数学考试大纲考试内容和考试要求考试内容 二次型及其矩阵表示 合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性 考试要求 1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念 2.了解二次型的秩的概念,了解二

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论