《数学归纳法》教学设计.docx_第1页
《数学归纳法》教学设计.docx_第2页
《数学归纳法》教学设计.docx_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

“数学归纳法”教学设计山西省平遥中学 李 英【教学内容剖析】数学归纳法是人教版选修教材22第二章第三节内容,本节课是第一课时。前面学生已经通过数列一章内容和其它相关内容的学习,初步掌握了由有限多个特殊事例得出一般结论的推理方法,即不完全归纳法。但由于有限多个特殊事例得出的结论不一定正确,这种推理方法不能作为一种论证方法。因此,在不完全归纳法的基础上,必须进一步学习严谨的科学的论证方法数学归纳法。数学归纳法亮点就在于,通过有限个步骤的推理,证明n取无限多个正整数的情形,这也是无限与有限辨证统一的体现。并且,本节内容是培养学生严谨的推理能力、训练学生的抽象思维能力、体验数学内在美的很好的素材。【教学目标确定】1、知识和技能(1) 了解数学归纳法的原理;(2) 掌握数学归纳法证题的两个步骤和一个结论的模式;(3) 会用数学归纳法证明一些简单的数学命题。2、过程与方法通过多米诺骨牌实验引出数学归纳法的原理,使学生体验由实践向理论过度的过程。在学习中培养学生探索发现问题、提出问题的意识,解决问题和数学交流的能力,学会用总结、归纳、演绎类比探求新知识。3.情感态度价值观通过对问题的探究活动,亲历知识的构建过程,领悟其中所蕴涵的数学思想;体验探索中挫折的艰辛和成功的快乐,感悟“数学美”,激发学习热情,培养多思勤练的好习惯和勇于探索的治学精神。进一步形成正确的数学观,创新意识和科学精神。【教学重点和难点】根据教学大纲的要求、本节课内容特点和学生现有知识水平,本节课知识的重点和难点制定如下:教学重点:(1)使学生理解数学归纳法的实质 。(2)掌握数学归纳法证题步骤,尤其是递推步骤中归纳假设和恒等变换的运用教学的难点:(1)学生不易理解数学归纳法的思想实质,具体表现在不了解第二个步骤的作用,不易根据归纳假设作出证明;(2)运用数学归纳法时,在“归纳递推”的步骤中发现具体问题的递推关系因此,用数学归纳法证明命题的关键在第二步,而第二步的关键在于合理利用归纳假设如果不会运用“假设当时,命题成立”这一条件,那实际上就是不会运用数学归纳法。 为突破以上教学难点,通过问题的转化,进而把无限的验证转化为对两个命题:“(1)当时,命题成立;(2)假设时,命题成立,求证:当时命题成立”的证明,而且在第二个命题的分析中强调条件的存在与用途,从而突破数学归纳法第二步中证明命题的难点【教学条件支持】利用视频动态地演示多米诺骨牌游戏,从中体会并理解“归纳奠基”和“归纳递推”,知道只有把“归纳奠基”与“归纳递推”结合起来,才能完成数学归纳法的证明过程,理解数学归纳法的证明步骤另外,在课堂练习时,选择学生中有代表性的解法,利用实物投影进行分析讲解,增强课堂教学效果【教学过程设计】一、问题导入1、思考题:已知数列满足,且,我们已经计算出,并由此猜想通项公式为,那么如何证明我们的猜想是正确的呢?分析:逐一验证是不可能的那么,我们应该思考“怎样通过有限个步骤的推理,证明取所有正整数都成立”的问题引出课题“这就是我们今天要研究的一种特殊的直接证明方法数学归纳法”【设计意图】 应用归纳推理,发现新事实,获得新结论,这是数学归纳法的先行组织者;该思考题的类型出现在本章第一节的合情推理中,是课标教材“螺旋式”上升的具体体现,其思维模式就是“观察归纳猜想证明”2.体会多米诺骨牌游戏中蕴含的数学思想游戏:在多米诺骨牌游戏中,能使所有多米诺骨牌全部倒下的条件是什么?【设计意图】 通过对多米诺骨牌游戏的分析,让学生经历从具体到抽象的归纳和概括过程,从而理解数学归纳法的本质.思考游戏1: 多米诺骨牌游戏的最大特点是什么?(牵一发而动全身)思考游戏2: 摆放好多米诺骨牌,推倒第2块骨牌,观察发生的结果?【设计意图】 在多米诺骨牌游戏过程中,体会所有骨牌都倒下,第1块骨牌必须倒下,这是基础,也是前提条件.思考游戏3: 摆放好多米诺骨牌,存在一块骨牌倒下后没有砸倒下一块骨牌,观察发生的结果? 【设计意图】 在多米诺骨牌游戏过程中,第块骨牌倒下,是后一块骨牌倒下的保证,这就是多米诺骨牌游戏的连续性和传递性问题1:要确保所有的多米诺骨牌都倒下,那么必须满足哪些条件?问题2: 从多米诺骨牌游戏中,抽象出解决与正整数有关的命题的方法?【设计意图】 在类比的过程中学习数学归纳法.分析1:根据“第一块骨牌倒下”抽象出数学归纳法的第一步,即(1)证明当取第一个值时,命题成立. (归纳奠基)分析2:根据“假设某一块骨牌倒下,那么必定导致后一块骨牌倒下。”,抽象出数学归纳法的第二步,即(2)假设时命题成立,证明当时命题也成立. (归纳递推)分析3:从完成“多米诺骨牌游戏”中,抽象出数学归纳法证明命题的结论,即由(1),(2)可知,命题对于从开始的所有正整数都成立.板书,证明过程3.数学归纳法概念的形成数学归纳法: 对于一些与正整数有关的命题,我们常采用下面的方法来证明它们的正确性:(1)证明当取第一个值时,命题成立;(归纳奠基)(2)假设时命题成立,证明当时命题也成立;(归纳递推)根据(1)和(2),可知命题对于从开始的所有正整数都成立.问题3: (1)为什么完成了“两个步骤和一个结论”就说明命题对所有的正整数都成立?【设计意图】 进一步理解“通过有限个步骤的推理,证明取所有正整数都成立”的情形.分析:有了第(1)步,就有了基础;有了第(2)步,就可以进行传递,形成了无限的循环;有了结论,整个数学归纳法的过程顺利完成了. 4.数学归纳法的应用【设计意图】 尝试应用数学归纳法解决问题,所以本题选取了教材练习的第一小题。在本题证明中,如果有学生出现直接套用公式解决的同学,就及时强调第二步证明中核心必须用到归纳假设。 (3)请用数学归纳法证明: 5课堂小结(1)理解数学归纳法的原理(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论