


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
正项级数相关知识点总结1110810115 马舜1. 给定一个数列un,对它的各项依次用“+”号连接起来的表达式u1+u2+.un+称为数项级数。其中un为通项。记作n。若级数n的各项都是非负的实数,则称其为正项级数。2. 正项级数收敛性的判别方法。 (1) 正项级数n收敛的充要条件是:部分和数列sn有界,即存在某正数M,对一切自然数n有SnN都有unvn,那么 1) 若级数n收敛,则级数n也收敛; 2)若级数n发散,则级数n也发散。 (3) 比较判别法的极限形式 设n和n是两个正项级数,若(un/vn)=p则 1)当0p+时,n与n同时收敛或同时发散; 2)当p=0时且级数n收敛时,n也收敛; 3)当p=+时且n发散时,n也发散。 (4) 比值判别法 设n是正项级数,且存在某个自然数N0及常数q(0qN0,不等式(un+1/un)成立,则级数n收敛; 2)若对一切n N0,不等式(un+1/un)成立,则级数n发散。 (5)比值判别法的极限形式 若n是正项级数,若(un+1/un)=q,则 1)当q1或q=+时,级数n发散。 (6)根值判别法 设n是正项级数,且存在某个正数N0及正常数q 1)若对一切n N0,不等式nqN0,不等式n1成立,则级数n发散。 (7)根值判别法的极限形式 设n是正项级数,且n=q, 1)当q1时,级数n发散。 (8)积分判别法 设为1, +上非负递减函数,那么正项级数与积分同时收敛或同时发散。(9)拉贝判别法 设n是正项级数,且存在某个自然数N0及常数q, 1)若对一切n N0,不等式成立,则级数n收敛; 2) 若对一切n N0,不等式成立,则级数n发散。(10)拉贝判别法的极限形式 设n是正项级数,且极限存在,则 1)当q1时,级数n收敛; 3)当q=1时,拉贝判别法无法判断。例题 证明. 证明:因为 (x1),且单调减, 所以。 (1) 反复利用分部积分法, 又 所以 (01) (2) 将(2)式代入(1)得. (判别法(9)(10)为查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 特种鸡养殖知识培训课件
- 特种部位焊接知识培训课件
- 教学课件模板图片大全高清下载
- 毛囊清洁术课件
- 毛皮服装抗收缩防护工艺考核试卷及答案
- 白酒原料脱醇工艺考核试卷及答案
- 镜架打磨工艺考核试卷及答案
- 电声器件涂装工艺考核试卷及答案
- 搪瓷涂层焊接修复工艺考核试卷及答案
- 2025年黑龙江省黑河市辅警协警笔试模拟题(附答案)
- 产品偏离许可管理办法
- 食品行业标准化管理体系的构建研究
- 湖北农商行面试题目及答案
- 对便秘患者的健康教育
- 2025年中国热敏标签市场调查研究报告
- 仓库不良品管理制度
- 干部出国境管理课件
- VR模拟器飞行员训练评估-洞察及研究
- 超声引导下动静脉内瘘穿刺技术培训课件
- 2025年公共基础知识真题库和答案
- 鸡肉购销合同协议书
评论
0/150
提交评论