




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
等比数列知识梳理:1、等比数列的定义:,称为公比2、通项公式:,首项:;公比:推广:3、等比中项:(1)如果成等比数列,那么叫做与的等差中项,即:或注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列是等比数列4、等比数列的前项和公式:(1)当时,(2)当时,(为常数)5、等比数列的判定方法:(1)用定义:对任意的,都有为等比数列(2)等比中项:为等比数列(3)通项公式:为等比数列6、等比数列的证明方法:依据定义:若或为等比数列7、等比数列的性质:(1)当时等比数列通项公式是关于的带有系数的类指数函数,底数为公比;前项和,系数和常数项是互为相反数的类指数函数,底数为公比。(2)对任何,在等比数列中,有,特别的,当时,便得到等比数列的通项公式。因此,此公式比等比数列的通项公式更具有一般性。(3)若,则。特别的,当时,得 注:(4)数列,为等比数列,则数列,(为非零常数)均为等比数列。(5)数列为等比数列,每隔项取出一项仍为等比数列(6)如果是各项均为正数的等比数列,则数列是等差数列(7)若为等比数列,则数列,成等比数列(8)若为等比数列,则数列,成等比数列(9)当时, 当时,当时,该数列为常数列(此时数列也为等差数列);当时,该数列为摆动数列.(10)在等比数列中,当项数为时,二 例题解析【例1】 已知Sn是数列an的前n项和,Snpn(pR,nN*),那么数列an( )A 是等比数列 B当p0时是等比数列B C当p0,p1时是等比数列 D不是等比数列【例2】 已知等比数列1,x1,x2,x2n,2,求x1x2x3x2n式;(2)已知a3a4a58,求a2a3a4a5a6的值【例4】 设a、b、c、d成等比数列,求证:(bc)2(ca)2(db)2(ad)2【例5】 求数列的通项公式:(1)an中,a12,an+13an2(2)an中,a1=2,a25,且an+23an+12an0三 考点分析考点一:等比数列定义的应用1、数列满足,则_2、在数列中,若,则该数列的通项_考点二:等比中项的应用1、已知等差数列的公差为,若,成等比数列,则( )A B C D2、若、成等比数列,则函数的图象与轴交点的个数为( )AB CD不确定3、已知数列为等比数列,求的通项公式考点三:等比数列及其前n项和的基本运算1、若公比为的等比数列的首项为,末项为,则这个数列的项数是( )A B C D2、已知等比数列中,则该数列的通项_3、若为等比数列,且,则公比_4、设,成等比数列,其公比为,则的值为( )AB C D5、等比数列an中,公比q=且a2+a4+a100=30,则a1+a2+a100=_.考点四:等比数列及其前n项和性质的应用1、在等比数列中,如果,那么为( )A B C D2、如果,成等比数列,那么( )A,B,C, D,3、在等比数列中,则等于( )ABCD4、在等比数列中,则等于( )A B C D5、在等比数列中,和是二次方程的两个根,则的值为( )ABCD6、若是等比数列,且,若,那么的值等于 考点五:公式的应用1、若数列的前n项和Sn=a1+a2+an,满足条件log2Sn=n,那么an是( )A.公比为2的等比数列 B.公比为的等比数列C.公差为2的等差数列 D.既不是等差数列也不是等比数列2、 等比数列前n项和Sn=2n-1,则前n项的平方和为( )A. (2n-1)2 B.(2n-1)2 C.4n-1 D.(4n-1)3、 设等比数列an的前n项和为Sn=3n+r,那么r的值为_.4、设数列an的前n项和为Sn且S1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年医疗器械行业数字化医疗设备市场发展前景报告
- 2025年航天航空行业太空旅游市场前景研究报告
- 2025年自动体外除颤仪行业研究报告及未来发展趋势预测
- 2025年包装行业绿色包装材料创新与市场应用研究报告
- 2025年综合能源服务行业研究报告及未来发展趋势预测
- 2025年材料科学行业先进材料制造技术应用前景评估报告
- 2025年智能家居行业物联网技术发展前景研究报告
- 2025年环保科技产业全球市场机遇与挑战研究报告
- 2025年教育行业在线教育发展前景研究报告
- 2025河南开封经济技术开发区消防大队政府专职消防员招聘4人笔试备考试题及答案解析
- 沈阳2025年辽宁沈阳辽中区四家事业单位面向区内事业单位遴选18人笔试历年参考题库附带答案详解
- 2025年中国内河码头行业市场深度分析及发展趋势预测报告
- 《国际贸易术语》课件
- 小学生美术素养的综合评价体系构建与实践
- 化学反应中的表示课件九年级化学(2024)上册
- 过敏性紫癜课件
- T-CSUS 69-2024 智慧水务技术标准
- 《全国计算机等级考试教程:二级WPS Office高级应用与设计》全套教学课件
- 专题种猪性能测定
- 纺织厂员工劳动合同范本
- 光伏项目合伙投资协议书
评论
0/150
提交评论