quantification and classification of mr spectra from human brain 量化的mr光谱从人类大脑的分类_第1页
quantification and classification of mr spectra from human brain 量化的mr光谱从人类大脑的分类_第2页
quantification and classification of mr spectra from human brain 量化的mr光谱从人类大脑的分类_第3页
quantification and classification of mr spectra from human brain 量化的mr光谱从人类大脑的分类_第4页
quantification and classification of mr spectra from human brain 量化的mr光谱从人类大脑的分类_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Quantification and Classification of MR spectra from human brain tumors using metabolite concentrations as input,Andy Devos, Leentje Vanhamme, Sabine Van Huffel, Lukas LukasDepartment of Electrical EngineeringKULeuven,Overview,Quantification of long echo proton MRS signals Classification of brain tumors Discussion points,PR Nijmegen 2001,ESAT-SISTA/COSIC, KULeuven,Quantification of long echo proton MRS signals,The dataset used Modeling a MRS signal Prior knowledge Strategy: spectral quantification using MRUI,PR Nijmegen 2001,ESAT-SISTA/COSIC, KULeuven,The dataset used,Centre: IDI, Barcelona (Philips data) 2 types of tumors: Glioblastomas= group 1 Meningiomas= group 2 20 data of group 123 data of group 2,PR Nijmegen 2001,ESAT-SISTA/COSIC, KULeuven,Modeling a MRS signal,Theoretical model function,PR Nijmegen 2001,Prior knowledge,7 peaks; Cho, Cr, NAA and the doublets of Ala and Lac,Cho, Cr, NAAIn phase jCho=jCr=jNAA=0Equal damping dCho=dCr=dNAA Ala Inverted jAla1=jAla2=180Equal damping dAla1=dAla2Frequency shift: 7 Hz,Lac: same as Ala,PR Nijmegen 2001,ESAT-SISTA/COSIC, KULeuven,Strategy: spectral quantification using MRUI,Preprocessinganalyse spectra in batch formatphase correction with Kloses methodalignment of the spectrafiltering with Lanczos HSVD: 25 components, +/-35 Hz Quantificationprior knowledgeAMARES: model signal in the time domainLorentzian/Gaussian lineshape,PR Nijmegen 2001,ESAT-SISTA/COSIC, KULeuven,Classification of brain tumors,Approaches to classification LS-SVM as a classification algorithm Comparison of two approaches peak pattern peak areas,PR Nijmegen 2001,ESAT-SISTA/COSIC, KULeuven,Classification based on quantification results: quantify peaks in spectrum Classification directly based on part of the spectraGoal: assist the doctors in making their diagnoses,Approaches to classification,PR Nijmegen 2001,ESAT-SISTA/COSIC, KULeuven,LS-SVM as a classification algorithm,ESAT-SISTA/COSIC, KULeuven,PR Nijmegen 2001,Classification based on the raw spectra,data magnitude spectrum range 4.17 0.94 ppm (or -34 -240 Hz): 107 pointsscaling of the dataregularisation: determine LS-SVM hyperparameters s, gclassification with LS-SVM,ESAT-SISTA/COSIC, KULeuven,PR Nijmegen 2001,ESAT-SISTA/COSIC, KULeuven,PR Nijmegen 2001,Classification based on estimated amplitudes,ESAT-SISTA/COSIC, KULeuven,ppm,PR Nijmegen 2001,Classification based on estimated amplitudes,ESAT-SISTA/COSIC, KULeuven,PR Nijmegen 2001,Classification based on estimated amplitudes,ESAT-SISTA/COSIC, KULeuven,PR Nijmegen 2001,ESAT-SISTA/COSIC, KULeuven,PR Nijmegen 2001,At present: no significant difference Future work: discrimination among more classes other feature extraction methods,Discussion points,Clinical information available?To what extent do the spectra belong to the assigned classes? e.g. tumor assigned as glioblastomas, while a large part of it is necrosis?information available?is this visible on MR images?how to handle this additional information?,PR Nijmegen 2001,ESAT-SISTA/COSIC, KULeuven,Discussion points,Combination of data from different centra?introduce additional categorical variable into classification method to correct for differences in centree.g. CDP 1SGHMS3IDI2Nijmegen4 do not scale these categorical variables,PR Nijmegen 2001,ESAT-SISTA/COSIC, KULeuven,Adjusting the performance crit

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论