



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
快乐学习,尽在中小学教育网分式的基本性质及应用庄亿农分式的基本性质对于我们掌握好分式很重要,我们一定要在理解的基础上加强记忆,以便正确灵活应用。一、基本性质的剖析分式的分子和分母都乘(或除以)同一个不等于0的整式,分式的值不变,即=,(M是不等于0的整式)。从形式上看,分式的基本性质与小学学过的分数基本性质几乎是一样的,学习起来不会有多大困难,但要真正理解和掌握,必须注意从三个方面去把握。1. 基本性质中的A、B、M表示整式,实际上随着知识的不断扩充,A、B、M还可以代表任何代数式(B、M不等于0)。2. 基本性质中的B0是已知条件中的隐含条件,在解题过程中一般不需要强调,M0这个条件千万不能忽略。在算术中讲到分数基本性质时,虽然也要求M0,但在运用中我们是不会用0去乘(或除)分数的分子与分母的,所以这个条件常常不被引起重视,而在分式中,M是一个含有字母的代数式,由于字母的取值可以是任意的,故M就有取0的可能性。因此,我们在应用基本性质时,应考查M的值是否为0,养成随时注意应在什么条件下应用这个性质的习惯。3. 基本性质由六部分构成:(1)分式的分子和分母;(2)都乘(或除以);(3)同一个;(4)不等于0;(5)整式;(6)分式的值不变。其中前五个是条件,第六个是结论,要注意条件中的“都”、“同一个”、“不等于0”和“整式”这几个关键词语,它们保证了“分式的值不变”这一结论。二、基本性质的应用1. 对一个由分式构成的等式从左到右进行变形。例1 填空:(1);(2)。分析:(1)右边的分母a2b是左边的分母ab乘a得到的,根据分式的基本性质,右边的分子应是左边的分子乘a,即为a(a-b)=a2ab;(2)右边的分子x+y是左边的分子x2xy除以x得到的,故右边的分母应是左边的分母除以x,即为x2x=x。解:(1);(2)。点评:解这类题时,要认真比较等式两边分式的分子和分子、分母和分母的关系,看它们同乘(或除以)了什么样的整式,切记变形前后分式的值保持不变。2. 把分式中各项的分数、小数系数化为整数系数。例2 将下列分式中各项的系数都化为整数:(1);(2)。分析:(1)中各项的系数都是小数,观察特点可知,只要将分子和分母同乘10就行了;(2)中各项的系数都是分数,它们分母的最小公倍数是12,所以只要将分式的分子和分母同乘12就解决问题了。解:(1);(2)。点评:解这类题时,要根据分式的基本性质进行变形。通常情况下,若各项系数都是分数,可以把分式的分子和分母同乘各项系数的所有分母的最小公倍数;若各项系数都是小数,可以根据具体情况,把分子和分母同乘10n;若各项系数不统一,有分数系数又能小数系数,要先化统一,再解题。3. 改变分式的分子、分母的符号。例3 下列各等式正确的是( )A. B. C. D. 分析:A中同时改变分式的分子、分母的符号,相当于把分式的分子、分母同乘1,分式的值不变,故A正确;B中改变符号后分母应为xy,不能只改变其中一项的符号,故B错误的;C中分子提出1后应为(xy),显然等式不成立;D中(yx)2=(xy)2,分子、分母同除以xy后不应改变分式本身的符号,故D也是错的。解:应选A。点评:利用分式的基本性质可以对一个分式的分子、分母的符号进行变化,即同时改变分式的分子和分母的符号,分式的值不变。4. 对分式进行约分。例4 约分:分析:首先将分子、分母中的每一个因式的最高次项系数化为正数,然后再对每一个能分解因式的多项式进行分解,利用分式的基本性质约去分子、分母中的相同因式。解:点评:将分式约分时,若分子、分母都是单项式,则公因式取相同字母的最低次幂与系数的最大公约数的积;若分子、分母是多项式或含多项式的因式积,则应先将多项式分解因式,再约去相同因式。5. 对分式进行通分。例5 通分:。分析:先将每个分式的分母分解因式,然后确定最简公分母。因为2a2=2(a1),a2a2=(a1)(a2),42a=2(a2),所以最简公分母为2(a1)(a2)。解:最简公分母为,。点评:通分的关键是确定最简公分母,若分母是单项式,则应从系数、相同字母、不同字母三个方面确定最简公分母;若分母是多项式,则应先分解因式,然后把每个因式当做一个因数(或字母),再按照单项式求最简公分母的方法确定最简公分母。确定最简公分母的一般步骤为:(1)确定系数(取各分母系数的最小公倍数);(2)确定因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东德州市武城县2025年英语七下期中教学质量检测试题含答案
- 野化大黄鱼评定规范
- 福建省晋江市永春县2025届英语八年级第二学期期中学业水平测试模拟试题含答案
- 2025年电力系统工程师考试试卷及答案
- 2025年财务审计与内控体系考核专业知识试题及答案
- 2025年房产估价师考试试卷及答案
- 2025年法律职业资格考试题及答案
- 小班美术欣赏教案
- 健身房设备安全操作规范
- 肿瘤病人创新护理措施
- 2025年中考物理终极押题猜想(新疆卷)(考试版A4)
- 护理文化建设与人文护理
- 《植物生理学》章节复习提纲(大学期末复习资料)
- 医疗集团医保统一管理制度
- 《招投标培训》课件
- 精装修施工的监理细则
- 医疗质量和医疗安全培训
- 口腔解剖生理学-第八章(动脉)
- 装修施工项目投标书模板
- 人体发育学练习题(选择题)
- DB11-T 1446-2017 回弹法、超声回弹综合法检测泵送混凝土抗压强度技术规程
评论
0/150
提交评论