




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2 1 1椭圆及其标准方程 一 课题引入 生活中的椭圆 如何精确地设计 制作 建造出现实生活中这些椭圆形的物件呢 椭圆的画法 二 讲授新课 1 椭圆定义 平面内与两个定点的距离和等于常数 大于 的点的轨迹叫作椭圆 这两个定点叫做椭圆的焦点 两焦点间的距离叫做椭圆的焦距 注意 椭圆定义中容易遗漏的三处地方 1 必须在平面内 2 两个定点 两点间距离确定 常记作2c 3 绳长 轨迹上任意点到两定点距离和确定 常记作2a 且2a 2c 若2a F1F2轨迹是什么呢 轨迹是一条线段 若2a F1F2轨迹是什么呢 轨迹不存在 求动点轨迹方程的一般步骤 坐标法 1 建立适当的坐标系 用有序实数对 x y 表示曲线上任意一点M的坐标 2 写出适合条件P M 3 用坐标表示条件P M 列出方程 4 化方程为最简形式 5 证明以化简后的方程为所求方程 可以省略不写 如有特殊情况 可以适当予以说明 2 求椭圆的方程 探讨建立平面直角坐标系的方案 方案一 原则 尽可能使方程的形式简单 运算简单 一般利用对称轴或已有的互相垂直的线段所在的直线作为坐标轴 对称 简洁 解 取过焦点F1 F2的直线为x轴 线段F1F2的垂直平分线为y轴 建立平面直角坐标系 如图 设M x y 是椭圆上任意一点 椭圆的焦距2c c 0 M与F1和F2的距离的和等于正常数2a 2a 2c 则F1 F2的坐标分别是 c 0 c 0 由椭圆的定义得 限制条件 代入坐标 问题 下面怎样化简 移项 再平方 两边再平方 得 整理得 由椭圆定义可知 两边除以得 叫做椭圆的标准方程 它所表示的椭圆的焦点在x轴上 焦点是 中心在坐标原点的椭圆方程 其中 合作探究 如果椭圆的焦点在y轴上 那么椭圆的标准方程又是怎样的呢 如果椭圆的焦点在y轴上 选取方式不同 调换x y轴 如图所示 焦点则变成只要将方程中的调换 即可得 p 0 也是椭圆的标准方程 3 椭圆的标准方程 焦点在x轴 焦点在y轴 总体印象 对称 简洁 像 直线方程的截距式 图形 方程 焦点 F c 0 F 0 c a b c之间的关系 c2 a2 b2 MF1 MF2 2a 2a 2c 0 定义 注 共同点 椭圆的标准方程表示的一定是焦点在坐标轴上 中心在坐标原点的椭圆 方程的左边是平方和 右边是1 不同点 焦点在x轴的椭圆项分母较大 焦点在y轴的椭圆项分母较大 若是 则判定其焦点在何轴 并指明 写出焦点坐标 练习1 下列方程哪些表示椭圆 练习2 求适合下列条件的椭圆的标准方程 1 a b 1 焦点在x轴上 2 焦点为F1 0 3 F2 0 3 且a 5 3 两个焦点分别是F1 2 0 F2 2 0 且过P 2 3 点 4 经过点P 2 0 和Q 0 3 小结 求椭圆标准方程的步骤 定位 确定焦点所在的坐标轴 定量 求a b的值 练习3 已知椭圆的方程为 请填空 1 a b c 焦点坐标为 焦距等于 2 若C为椭圆上一点 F1 F2分别为椭圆的左 右焦点 并且CF1 2 则CF2 5 4 3 3 0 3 0 6 8 变式 若椭圆的方程为 试口答完成 1 练习4 已知方程表示焦点在x轴上的椭圆 则m的取值范围是 0 4 变式 方程 分别求方程满足下列条件的m的取值范围 表示一个圆 表示一个椭圆 表示焦点在x轴上的椭圆 例1 已知一个运油车上的贮油罐横截面的外轮廓线是一个椭圆 它的焦距为2 4m 外轮廓线上的点到两个焦点距离的和为3m 求这个椭圆的标准方程 解 以两焦点所在直线为X轴 线段的垂直平分线为y轴 建立平面直角坐标系xOy 则这个椭圆的标准方程为 根据题意 2a 3 2c 2 4 所以 b2 1 52 1 22 0 81 因此 这个椭圆的方程为 例2 过椭圆的一个焦点的直线与椭圆交于A B两点 求的周长 三 回顾小结 求椭圆标准方程的方法 求美意识 求简意识 前瞻意识 探索 已知椭圆有这样的光学性质 从椭圆的一个焦点出发的光线 经椭圆反射后 反射光线经过椭圆的另一个焦点 今有一个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年建筑声环境工程师执业资格考试试题及答案解析
- 课件中对话模式设置
- 2025年互联网金融分析师专业素质测评试题及答案解析
- 2025年软件开发工程师高级考试预测题库
- 2025年广告创意设计师职业资格考试试题及答案解析
- 2025年动画设计师创意实践考试试卷及答案解析
- 山歌好比春江水教学课件
- 2025年安全生产责任制面试题与答案
- 2025年喷漆作业安全培训题及答案
- 课件不合规问题分析
- 医疗器械生产企业GMP培训专家讲座
- 2023年中远海运船员管理有限公司招聘笔试题库及答案解析
- 辐射及其安全防护(共38张PPT)
- 金风15兆瓦机组变流部分培训课件
- 膀胱镜检查记录
- 沈阳终止解除劳动合同证明书(三联)
- 化工装置静设备基本知识
- 电脑节能环保证书
- 美国共同基金SmartBeta布局及借鉴
- 露天矿山危险源辨识汇总
- 国家城镇救援队伍能力建设与分级测评指南
评论
0/150
提交评论