




免费预览已结束,剩余14页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
毕 业 论 文题 目 数控加工与数控工艺 专 业 数控加工与维护工程班 级 07大专数控(三)班学 生 贺 东 昇 指导教师 汪 化 娟 西安工业大学函授部二 0 0 九 年摘 要由于数控机床要按照预先编制好的程序自动加工零件,因此,程序编制的好坏直接影响数控机床的正确使用和数控加工特点的发挥。这就要求编程员具有比较高的素质。编程员应通晓机械加工工艺以及机床、刀夹具、数控系统的性能,熟悉工厂的生产特点和生产习惯。在工作中,编程员不但要责任心强、细心,而且还能和操作人员配合默契,不断吸取别人的编程经验、积累编程经验和编程技巧,并逐步实现编程自动化,以提高编程效率数控机床却不一样,它是按照事先编制好的加工程序,自动地对被加工零件进行加工。我们把零件的加工工艺路线、工艺参数、刀具的运动轨迹、位移量、切削参数(主轴转数、进给量、吃刀量等)以及辅助功能(换刀、主轴正转、反转、切削液开、关等),按照数控机床规定的指令代码及程序格式编写成加工程序单,再把这一程序单中的内容记录在控制介质上(如穿孔纸带、磁带、磁盘、磁泡存储器),然后输入到数控机床的数控装置中,从而指挥机床加工零件。这种从零件图的分析到制成控制介质的全部过程叫数控程序的编制。应根据工件材料的性能,机床的加工能力,加工工序的类型,切削用量以及其他与加工有关的因素来选择刀具。对刀具总的要求是:安装调整方便,刚性好,精度高,使用寿命长等。 切削用量包括:主轴转速、进给速度、切削深度等。切削深度由机床、刀具、工件的刚度确定,在刚度允许的条件下,粗加工取较大切削深度,以减少走刀次数,提高生产率;精加工取较小切削深度,以获得表面质量。主轴转速由机床允许的切削速度及工件直径选取。进给速度则按零件加工精度、表面粗糙度要求选取,粗加工取较大值,精加工取较小值。最大进给速度受机床刚度及进给系统性能由于它们的硬件、软件配套不尽相同,这样给维修工作带来了很多困难。为此,我们与使用同类型数控设备的单位建立了友好联系,经常就管理和维修方面的经验进行交流,互通信息,这样对数控机床的使用起到了一定的推动作用。装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业(如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业)的使能技术和最基本的装备。马克思曾经说过“各种经济时代的区别,不在于生产什么,而在于怎样生产,用什么劳动资料生产”。制造技术和装备就是人类生产活动的最基本的生产资料,而数控技术又是当今先进制造技术和装备最核心的技术。当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态多变市场的适应能力和竞争能力。此外世界上各工业发达国家还将数控技术及数控装备列为国家的战略物资,不仅采取重大措施来发展自己的数控技术及其产业,而且在“高精尖”数控关键技术和装备方面对我国实行封锁和限制政策。总之,大力发展以数控技术为核心的先进制造技术已成为世界各发达国家加速经济发展、提高综合国力和国家地位的重要途径。 数控技术是用数字信息对机械运动和工作过程进行控制的技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造业的渗透形成的机电一体化产品,即所谓的数字化装备,其技术范围覆盖很多领域:(1)机械制造技术;(2)信息处理、加工、传输技术;(3)自动控制技术;(4)伺服驱动技术;(5)传感器技术;(6)软件技术等。关键词:发展趋势 数控机床 切削用量 数控工艺目 录第一章 概述 1.1 数控机床的前景1.2 数控机床的发展史1.3 数控技术的发展趋势 第二章 数控机床的分类2.1 金属切削类数控机床2.2 按控制控制运动轨迹分类2.3 按驱动装置的特点分类2.4 混合控制数控机床第三章 数控机床加工中切削用量的选择3.1 合理选择切削用量3.2 主轴转速n(r/min)第四章 数控加工工艺设计4.1毛坯选择时应考虑的因素4.2粗基准原则4.3精基准的选择原则4.4加工阶段的划分4.5顺序的安排4.6的集中与分散结论致谢参考文献第一章 概述1.1 数控机床的前景控技术和数控装备是制造工业现代化的重要基础。这个基础是否牢固直接影响到一个国家的经济发展和综合国力,关系到一个国家的战略地位。因此,世界上各工业发达国家均采取重大措施来发展自己的数控技术及其产业。在我国,数控技术与装备的发展亦得到了高度重视,近年来取得了相当大的进步。特别是在通用微机数控领域,以PC平台为基础的国产数控系统,已经走在了世界前列。但是,我国在数控技术研究和产业发展方面亦存在不少问题,特别是在技术创新能力、商品化进程、市场占有率等方面情况尤为突出。在新世纪到来时,如何有效解决这些问题,使我国数控领域沿着可持续发展的道路,从整体上全面迈入世界先进行列,使我们在国际竞争中有举足轻重的地位,将是数控研究开发部门和生产厂家所面临的重要任务。为完成此任务,首先必须确立符合中国国情的发展道路。为此,本文从总体战略和技术路线两个层次及数控系统、功能部件、数控整机等几个具体方面探讨了新世纪的发展途径。 1.2数控机床的发展史 20世纪中期,随着电子技术的发展,自动信息处理、数据处理以及电子计算机的出现,给自动化技术带来了新的概念,用数字化信号对机床运动及其加工过程进行控制,推动了机床自动化的发展。 采用数字技术进行机械加工,最早是在40年代初,由美国北密支安的一个小型飞机工业承包商派尔逊斯公司(ParsonsCorporation)实现的。他们在制造飞机的框架及直升飞机的转动机翼时,利用全数字电子计算机对机翼加工路径进行数据处理,并考虑到刀具直径对加工路线的影响,使得加工精度达到0.0381mm(0.0015in),达到了当时的最高水平。 1952年,麻省理工学院在一台立式铣床上,装上了一套试验性的数控系统,成功地实现了同时控制三轴的运动。这台数控机床被大家称为世界上第一台数控机床。 这台机床是一台试验性机床,到了1954年11月,在派尔逊斯专利的基础上,第一台工业用的数控机床由美国本迪克斯公司(Bendix-Cooperation)正式生产出来。 在此以后,从1960年开始,其他一些工业国家,如德国、日本都陆续开发、生产及使用了数控机床。 数控机床中最初出现并获得使用的是数控铣床,因为数控机床能够解决普通机床难于胜任的、需要进行轮廓加工的曲线或曲面零件。 然而,由于当时的数控系统采用的是电子管,体积庞大,功耗高,因此除了在军事部门使用外,在其他行业没有得到推广使用。 到了1960年以后,点位控制的数控机床得到了迅速的发展。因为点位控制的数控系统比起轮廓控制的数控系统要简单得多。因此,数控铣床、冲床、坐标镗床大量发展,据统计资料表明,到1966年实际使用的约6000台数控机床中,85%是点位控制的机床。 数控机床的发展中,值得一提的是加工中心。这是一种具有自动换刀装置的数控机床,它能实现工件一次装卡而进行多工序的加工。这种产品最初是在1959年3月,由美国卡耐;特雷克公司(Keaney&TreckerCorp.)开发出来的。这种机床在刀库中装有丝锥、钻头、铰刀、铣刀等刀具,根据穿孔带的指令自动选择刀具,并通过机械手将刀具装在主轴上,对工件进行加工。它可缩短机床上零件的装卸时间和更换刀具的时间。加工中心现在已经成为数控机床中一种非常重要的品种,不仅有立式、卧式等用于箱体零件加工的镗铣类加工中心,还有用于回转整体零件加工的车削中心、磨削中心等。 1967年,英国首先把几台数控机床连接成具有柔性的加工系统,这就是所谓的柔性制造系统(FlexibleManufacturingSystemFMS)之后,美、欧、日等也相继进行开发及应用。 1974年以后,随着微电子技术的迅速发展,微处理器直接用于数控机床,使数控的软件功能加强,发展成计算机数字控制机床(简称为CNC机床),进一步推动了数控机床的普及应用和大力发展。 80年代,国际上出现了14台加工中心或车削中心为主体,再配上工件自动装卸和监控检验装置的柔性制造单元(FlexibleManufacturingCellFMC)。这种单元投资少,见效快,既可单独长时间少人看管运行,也可集成到FMS或更高级的集成制造系统中使用。 目前,FMS也从切削加工向板材冷作、焊接、装配等领域扩展,从中小批量加工向大批量加工发展。 所以机床数控技术,被认为是现代机械自动化的基础技术。我国的数控磨床水平不错,每年都有大量出口,因为它简单,基本属于劳动密集型。 金属加工主要是去除材料,得到想得到的金属形状。去除材料,主要靠车和铣,车床发展为数控车床,铣床发展为加工中心。高精度多轴机床,可以让复杂零件在精度和形状上一次到位,例如,飞机上的一个复杂零件,以前由很多种工人:车工、铣工、磨床工、画线工、热处理工用好几个月干,其中还有报废的,最新的复合数控机床几天甚至几个小时就全干好了,而且精度比你设计的还高。零件精度高就意味着寿命长,可靠性好。由普通发展到数控,一个人原来的十个,在精度上,更是没法说,适应性上,零件变了,换个程序就行。把人的因素也降为最低,以前在工厂,谁要时会车涡轮、蜗杆,没个10年8年的不行,要是谁掌握了,那牛得很。现在用数控设备,只要你会编程,把参数输进去就可以了,很简单,刚毕业的技校学生都会,而且批量的产品质量也有保证。1.3数控技术的发展趋势数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势。从目前世界上数控技术及其装备发展的趋势来看,其主要研究热点有以下几个方面14。 高速、高精加工技术及装备的新趋势效率、质量是先进制造技术的主体。高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。为此日本先端技术研究会将其列为5大现代制造技术之一,国际生产工程学会(CIRP)将其确定为21世纪的中心研究方向之一。在轿车工业领域,年产30万辆的生产节拍是40秒/辆,而且多品种加工是轿车装备必须解决的重点问题之一;在航空和宇航工业领域,其加工的零部件多为薄壁和薄筋,刚度很差,材料为铝或铝合金,只有在高切削速度和切削力很小的情况下,才能对这些筋、壁进行加工。近来采用大型整体铝合金坯料“掏空”的方法来制造机翼、机身等大型零件来替代多个零件通过众多的铆钉、螺钉和其他联结方式拼装,使构件的强度、刚度和可靠性得到提高。这些都对加工装备提出了高速、高精和高柔性的要求。 从EMO2001展会情况来看,高速加工中心进给速度可达80m/min,甚至更高,空运行速度可达100m/min左右。目前世界上许多汽车厂,包括我国的上海通用汽车公司,已经采用以高速加工中心组成的生产线部分替代组合机床。美国CINCINNATI公司的HyperMach机床进给速度最大达60m/min,快速为100m/min,加速度达2g,主轴转速已达60 000r/min。加工一薄壁飞机零件,只用30min,而同样的零件在一般高速铣床加工需3h,在普通铣床加工需8h;德国DMG公司的双主轴车床的主轴速度及加速度分别达12*!000r/mm和1g。在加工精度方面,近10年来,普通级数控机床的加工精度已由10m提高到5m,精密级加工中心则从35m,提高到11.5m,并且超精密加工精度已开始进入纳米级(0.01m)。 在可靠性方面,国外数控装置的MTBF值已达6 000h以上,伺服系统的MTBF值达到30000h以上,表现出非常高的可靠性。为了实现高速、高精加工,与之配套的功能部件如电主轴、直线电机得到了快速的发展,应用领域进一步扩大。轴联动加工和复合加工机床快速发展采用5轴联动对三维曲面零件的加工,可用刀具最佳几何形状进行切削,不仅光洁度高,而且效率也大幅度提高。一般认为,1台5轴联动机床的效率可以等于2台3轴联动机床,特别是使用立方氮化硼等超硬材料铣刀进行高速铣削淬硬钢零件时,5轴联动加工可比3轴联动加工发挥更高的效益。但过去因5轴联动数控系统、主机结构复杂等原因,其价格要比3轴联动数控机床高出数倍,加之编程技术难度较大,制约了5轴联动机床的发展。当前由于电主轴的出现,使得实现5轴联动加工的复合主轴头结构大为简化,其制造难度和成本大幅度降低,数控系统的价格差距缩小。因此促进了复合主轴头类型5轴联动机床和复合加工机床(含5面加工机床)的发展。在EMO2001展会上,新日本工机的5面加工机床采用复合主轴头,可实现4个垂直平面的加工和任意角度的加工,使得5面加工和5轴加工可在同一台机床上实现,还可实现倾斜面和倒锥孔的加工。德国DMG公司展出DMUVoution系列加工中心,可在一次装夹下5面加工和5轴联动加工,可由CNC系统控制或CAD/CAM直接或间接控制。 智能化、开放式、网络化成为当代数控系统发展的主要趋势21世纪的数控装备将是具有一定智能化的系统,智能化的内容包括在数控系统中的各个方面:为追求加工效率和加工质量方面的智能化,如加工过程的自适应控制,工艺参数自动生成;为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算、自动识别负载自动选定模型、自整定等;简化编程、简化操作方面的智能化,如智能化的自动编程、智能化的人机界面等;还有智能诊断、智能监控方面的内容、方便系统的诊断及维修等。为解决传统的数控系统封闭性和数控应用软件的产业化生产存在的问题。目前许多国家对开放式数控系统进行研究,如美国的NGC(The Next Generation Work-Station/Machine Control)、欧共体的OSACA(Open System Architecture for Control within Automation Systems)、日本的OSEC(Open System Environment for Controller),中国的ONC(Open Numerical Control System)等。数控系统开放化已经成为数控系统的未来之路。所谓开放式数控系统就是数控系统的开发可以在统一的运行平台上,面向机床厂家和最终用户,通过改变、增加或剪裁结构对象(数控功能),形成系列化,并可方便地将用户的特殊应用和技术诀窍集成到控制系统中,快速实现不同品种、不同档次的开放式数控系统,形成具有鲜明个性的名牌产品。目前开放式数控系统的体系结构规范、通信规范、配置规范、运行平台、数控系统功能库以及数控系统功能软件开发工具等是当前研究的核心。 网络化数控装备是近两年国际著名机床博览会的一个新亮点。数控装备的网络化将极大地满足生产线、制造系统、制造企业对信息集成的需求,也是实现新的制造模式如敏捷制造、虚拟企业、全球制造的基础单元。国内外一些著名数控机床和数控系统制造公司都在近两年推出了相关的新概念和样机,如在EMO2001展中,日本山崎马扎克(Mazak)公司展出的“CyberProduction Center”(智能生产控制中心,简称CPC);日本大隈(Okuma)机床公司展出“IT plaza”(信息技术广场,简称IT广场);德国西门子(Siemens)公司展出的Open Manufacturing Environment(开放制造环境,简称OME)等,反映了数控机床加工向网络化方向发展的趋势。第二章 数控机床的分类21 金属切削类数控机床 与传统的车、铣、钻、磨、齿轮加工相对应的数控机床有数控车床、数控铣床、数控钻床、数控磨床、数控齿轮加工机床等。尽管这些数控机床在加工工艺方法上存在很大差别,具体的控制方式也各不相同,但机床的动作和运动都是数字化控制的,具有较高的生产率和自动化程度。 在普通数控机床加装一个刀库和换刀装置就成为数控加工中心机床。加工中心机床进一步提高了普通数控机床的自动化程度和生产效率。例如铣、镗、钻加工中心,它是在数控铣床基础上增加了一个容量较大的刀库和自动换刀装置形成的,工件一次装夹后,可以对箱体零件的四面甚至五面大部分加工工序进行铣、镗、钻、扩、铰以及攻螺纹等多工序加工,特别适合箱体类零件的加工。加工中心机床可以有效地避免由于工件多次安装造成的定位误差,减少了机床的台数和占地面积,缩短了辅助时间,大大提高了生产效率和加工质量。 2.2、按控制运动轨迹分类 1点位控制数控机床 位置的精确定位,在移动和定位过程中不进行任何加工。机床数控系统只控制行程终点的坐标值,不控制点与点之间的运动轨迹,因此几个坐标轴之间的运动无任何联系。可以几个坐标同时向目标点运动,也可以各个坐标单独依次运动。 这类数控机床主要有数控坐标镗床、数控钻床、数控冲床、数控点焊机等。点位控制数控机床的数控装置称为点位数控装置。 2直线控制数控机床 直线控制数控机床可控制刀具或工作台以适当的进给速度,沿着平行于坐标轴的方向进行直线移动和切削加工,进给速度根据切削条件可在一定范围内变化。 直线控制的简易数控车床,只有两个坐标轴,可加工阶梯轴。直线控制的数控铣床,有三个坐标轴,可用于平面的铣削加工。现代组合机床采用数控进给伺服系统,驱动动力头带有多轴箱的轴向进给进行钻镗加工,它也可算是一种直线控制数控机床。 数控镗铣床、加工中心等机床,它的各个坐标方向的进给运动的速度能在一定范围内进行调整,兼有点位和直线控制加工的功能,这类机床应该称为点位/直线控制的数控机床。 3轮廓控制数控机床 轮廓控制数控机床能够对两个或两个以上运动的位移及速度进行连续相关的控制,使合成的平面或空间的运动轨迹能满足零件轮廓的要求。它不仅能控制机床移动部件的起点与终点坐标,而且能控制整个加工轮廓每一点的速度和位移,将工件加工成要求的轮廓形状。 常用的数控车床、数控铣床、数控磨床就是典型的轮廓控制数控机床。数控火焰切割机、电火花加工机床以及数控绘图机等也采用了轮廓控制系统。轮廓控制系统的结构要比点位/直线控系统更为复杂,在加工过程中需要不断进行插补运算,然后进行相应的速度与位移控制。 现在计算机数控装置的控制功能均由软件实现,增加轮廓控制功能不会带来成本的增加。因此,除少数专用控制系统外,现代计算机数控装置都具有轮廓控制功能。 2.3按驱动装置的特点分类 1开环控制数控机床 这类控制的数控机床是其控制系统没有位置检测元件,伺服驱动部件通常为反应式步进电动机或混合式伺服步进电动机。数控系统每发出一个进给指令,经驱动电路功率放大后,驱动步进电机旋转一个角度,再经过齿轮减速装置带动丝杠旋转,通过丝杠螺母机构转换为移动部件的直线位移。移动部件的移动速度与位移量是由输入脉冲的频率与脉冲数所决定的。此类数控机床的信息流是单向的,即进给脉冲发出去后,实际移动值不再反馈回来,所以称为开环控制数控机床。 开环控制系统的数控机床结构简单,成本较低。但是,系统对移动部件的实际位移量不进行监测,也不能进行误差校正。因此,步进电动机的失步、步距角误差、齿轮与丝杠等传动误差都将影响被加工零件的精度。开环控制系统仅适用于加工精度要求不很高的中小型数控机床,特别是简易经济型数控机床。 2闭环控制数控机床 接对工作台的实际位移进行检测,将测量的实际位移值反馈到数控装置中,与输入的指令位移值进行比较,用差值对机床进行控制,使移动部件按照实际需要的位移量运动,最终实现移动部件的精确运动和定位。从理论上讲,闭环系统的运动精度主要取决于检测装置的检测精度,也与传动链的误差无关,因此其控制精度高。图1-3所示的为闭环控制数控机床的系统框图。图中A为速度传感器、C为直线位移传感器。当位移指令值发送到位置比较电路时,若工作台没有移动,则没有反馈量,指令值使得伺服电动机转动,通过A将速度反馈信号送到速度控制电路,通过C将工作台实际位移量反馈回去,在位置比较电路中与位移指令值相比较,用比较后得到的差值进行位置控制,直至差值为零时为止。这类控制的数控机床,因把机床工作台纳入了控制环节,故称为闭环控制数控机床。 闭环控制数控机床的定位精度高,但调试和维修都较困难,系统复杂,成本高。 3半闭环控制数控机床 半闭环控制数控机床是在伺服电动机的轴或数控机床的传动丝杠上装有角位移电流检测装置(如光电编码器等),通过检测丝杠的转角间接地检测移动部件的实际位移,然后反馈到数控装置中去,并对误差进行修正。通过测速元件A和光电编码盘B可间接检测出伺服电动机的转速,从而推算出工作台的实际位移量,将此值与指令值进行比较,用差值来实现控制。由于工作台没有包括在控制回路中,因而称为半闭环控制数控机床。 半闭环控制数控系统的调试比较方便,并且具有很好的稳定性。目前大多将角度检测装置和伺服电动机设计成一体,这样,使结构更加紧凑。 2.4混合控制数控机床 将以上三类数控机床的特点结合起来,就形成了混合控制数控机床。混合控制数控机床特别适用于大型或重型数控机床,因为大型或重型数控机床需要较高的进给速度与相当高的精度,其传动链惯量与力矩大,如果只采用全闭环控制,机床传动链和工作台全部置于控制闭环中,闭环调试比较复杂。混合控制系统又分为两种形式: (1)开环补偿型它的基本控制选用步进电动机的开环伺服机构,另外附加一个校正电路。用装在工作台的直线位移测量元件的反馈信号校正机械系统的误差。 (2)半闭环补偿型它是用半闭环控制方式取得高精度控制,再用装在工作台上的直线位移测量元件实现全闭环修正,以获得高速度与高精度的统一。其中A是速度测量元件(如测速发电机),B是角度测量元件,C是直线位移测量元件。第三章 数控机床加工中切削用量与刀具的合理选择3. 1 合理选择切削用量 对于高效率的金属切削加工来说,被加工材料、切削工具、切削条件是三大要素。这些决定着加工时间、刀具寿命和加工质量。经济有效的加工方式必然是合理的选择了切削条件。 切削条件的三要素:切削速度、进给量和切深直接引起刀具的损伤。伴随着切削速度的提高,刀尖温度会上升,会产生机械的、化学的、热的磨损。切削速度提高20%,刀具寿命会减少1/2。 进给条件与刀具后面磨损关系在极小的范围内产生。但进给量大,切削温度上升,后面磨损大。它比切削速度对刀具的影响小。切深对刀具的影响虽然没有切削速度和进给量大,但在微小切深切削时,被切削材料产生硬化层,同样会影响刀具的寿命。 用户要根据被加工的材料、硬度、切削状态、材料种类、进给量、切深等选择使用的切削速度。 最适合的加工条件的选定是在这些因素的基础上选定的。有规则的、稳定的磨损达到寿命才是理想的条件。 然而,在实际作业中,刀具寿命的选择与刀具磨损、被加工尺寸变化、表面质量、切削噪声、加工热量等有关。在确定加工条件时,需要根据实际情况进行研究。对于不锈钢和耐热合金等难加工材料来说,可以采用冷却剂或选用刚性好的刀刃。a. 背吃刀量ap(mm)的选择 背吃刀量ap根据加工余量和工艺系统的刚度确定。在机床、工件和刀具刚度允许的情况下,ap就等于加工余量, 这是提高生产率的一个有效措施。为了保证零件的加工精度和表面粗糙度,一般应留一定的余量进行精加工。数控机床的精加工余量可略小于普通机床。具体选择如下: 粗加工时,在留下精加工、半精加工的余量后,尽可能一次走刀将剩下的余量切除;若工艺系统刚性不足或余量过大不能一次切除,也应按先多后少的不等余量法加工。第一刀的ap应尽可能大些,使刀口在里层切削,避免工件表面不平及有硬皮的铸锻件。 当冲击载荷较大(如断续表面)或工艺系统刚度较差(如细长轴、镗刀杆、机床陈旧)时,可适当降低ap,使切削力减小。 精加工时,ap应根据粗加工留下的余量确定,采用逐渐降低ap的方法,逐步提高加工精度和表面质量。一般精加工时,取ap=0.050.8mm;半精加工时,取ap=1.03b. 进给量(进给速度)f(mm/min或mm/r)的选择 进给量( 进给速度)是数控机床切削用量中的重要参数,根据零件的表面粗糙度、加工精度要求、刀具及工件材料等因素,参考切削用量手册选取。对于多齿刀具, 其进给速度vf、刀具转速n、刀具齿数Z 及每齿进给量fz的关系为: Vf=fn=fzzn。 粗加工时, 由于对工件表面质量没有太高的要求, f主要受刀杆、刀片、机床、工件等的强度和刚度所承受的切削力限制,一般根据刚度来选择。工艺系统刚度好时,可用大些的f;反之,适当降低f。 精加工、半精加工时,f应根据工件的表面粗糙度Ra要求选择。Ra要求小的,取较小的f,但又不能过小,因为f过小,切削厚度hD过薄,Ra反而增大,且刀具磨损加剧。刀具的副偏角愈大,刀尖圆弧半径愈大,则f可选较大值。一般,精铣时可取2025mm/min, 精车时可取0.100.20mm/r。还应注意零件加工中的某些特殊因素。比如在轮廓加工中,选择进给量时,应考虑轮廓拐角处的超程问题。特别是在拐角较大、进给速度较高时,应在接近拐角处适当降低进给速度,在拐角后逐渐升速,以保证加工精度。 c. 切削速度Vc(m/min)的选择 根据已经选定的背吃刀量、进给量及刀具耐用度选择切削速度。可用经验公式计算,也可根据生产实践经验在机床说明书允许的切削速度范围内查表选取或者参考有关切削用量手册选用。在选择切削速度时,还应考虑:应尽量避开积屑瘤产生的区域;断续切削时,为减小冲击和热应力,要适当降低切削速度;在易发生振动的情况下,切削速度应避开自激振动的临界速度;加工大件、细长件和薄壁工件时, 应选用较低的切削速度;加工带外皮的工件时,应适当降低切削速度;工艺系统刚性差的,应减小切削速度。3. 2主轴转速n(r/min) 主轴转速一般根据切削速度VC来选定。 计算公式为: n=1000VC/D 式中,D为工件或刀具直径(mm)。 数控机床的控制面板上一般备有主轴转速修调(倍率)开关,可在加工过程中对主轴整。 第四章 数控加工工艺设计4.1毛坯选择时应考虑的因素(1) 零件的材料及机械性能要求 零件材料的工艺特性和力学性能大致决定了毛坯的种类。例如铸铁零件用铸造毛坯;钢质零件当形状较简单且力学性能要求不高时常用棒料,对于重要的钢质零件,为获得良好的力学性能,应选用锻件,当形状复杂力学性能要求不高时用铸钢件;有色金属零件常用型材或铸造毛坯。(2) 零件的结构形状与外形尺寸大型且结构较简单的零件毛坯多用砂型铸造或自由锻;结构复杂的毛坯多用铸造;小型零件可用模锻件或压力铸造毛坯;板状钢质零件多用锻件毛坯;轴类零件的毛坯,若台阶直径相差不大,可用棒料;若各台阶尺寸相差较大,则宜选择锻。(3)生产纲领的大小大批大量生产中,应采用精度和生产率都较高的毛坯制造方法。铸件采用金属模机器造型和精密铸造,锻件用模锻或精密锻造。在单件小批生产中用木模手工造型或自由锻来制造毛坯。 (4) 现有生产条件确定毛坯时,必须结合具体的生产条件,如现场毛坯制造的实际水平和能力、外协的可能性等,否则就不现实。(5) 充分利用新工艺、新材料为节约材料和能源,提高机械加工生产率,应充分考虑精密铸造、精锻、冷轧、冷挤压、粉末冶金、异型钢材及工程塑料等在机械中的应用,这样,可大大减少机械加工量,甚至不需要进行加工,经济效益非常显著。4.2粗基准原则选择粗基准时,主要要求保证各加工面有足够的余量,使加工面与不加工面间的位置符合图样要求,并特别注意要尽快获得精基面。具体选择时应考虑下列原则:(1) 选择重要表面为粗基准 为保证工件上重要表面的加工余量小而均匀,则应选择该表面为粗基准。所谓重要表面一般是工件上加工精度以及表面质量要求较高的表面,如床身的导轨面,车床主轴箱的主轴孔,都是各自的重要表面。因此,加工床身和主轴箱时,应以导轨面或主轴孔为粗基准。如图4-25所示。 (2) 选择不加工表面为粗基准 为了保证加工面与不加工面间的位置要求,一般应选择不加工面为粗基准。如果工件上有多个不加工面,则应选其中与加工面位置要求较高的不加工面为粗基准,以便保证精度要求,使外形对称等。(3) 选择加工余量最小的表面为粗基准 在没有要求保证重要表面加工余量均匀的情况下,如果零件上每个表面都要加工,则应选择其中加工余量最小的表面为粗基准,以避免该表面在加工时因余量不足而留下部分毛坯面,造成工件废品。(4) 选择较为平整光洁、加工面积较大的表面为粗基准 以便工件定位可靠、夹紧方便。(5) 粗基准在同一尺寸方向上只能使用一次 因为粗基准本身都是未经机械加工的毛坯面,其表面粗糙且精度低,若重复使用将产生较大的误差。实际上,无论精基准还是粗基准的选择,上述原则都不可能同时满足,有时还是互相矛盾的。因此,在选择时应根据具体情况进行分析,权衡利弊,保证其主要的要求。4.3精基准的选择原则 制订工艺规程时,定位基准选择的正确与否,对能否保证零件的尺寸精度和相互位置精度要求,以及对零件各表面间的加工顺序安排都有很大影响,当用夹具安装工件时,定位 基准的选择还会影响到夹具结构的复杂程度。因此,定位基准的选择是一个很重要的工艺问 题。 选择定位基准时,是从保证工件加工精度要求出发的,因此,定位基准的选择应先选择精基准,再选择粗基准。选择精基准时,主要应考虑保证加工精度和工件安装方便可靠。其选择原则如下(1) 基准重合原则 即选用设计基准作为定位基准,以避免定位基准与设计基准不重合而引起的基准不重合误差(2)基准统一原则 应采用同一组基准定位加工零件上尽可能多的表面,这就是基准统一原则。这样做可以简化工艺规程的制订工作,减少夹具设计、制造工作量和成本,缩短生产准备周期;由于减少了基准转换,便于保证各加工表面的相互位置精度。例如加工轴类零件时,采用两中心孔定位加工各外圆表面,就符合基准统一原则。箱体零件采用一面两孔定位,齿轮的齿坯和齿形加工多采用齿轮的内孔及一端面为定位基准,均属于基准统一原则。(3) 自为基准原则 某些要求加工余量小而均匀的精加工工序,选择加工表面本身作为定位基准,称为自为基准原则。(4) 互为基准原则 当对工件上两个相互位置精度要求很高的表面进行加工时,需要用两个表面互相作为基准,反复进行加工,以保证位置精度要求。例如要保证精密齿轮的齿圈跳动精度,在齿面淬硬后,先以齿面定位磨内孔,再以内孔定位磨齿面,从而保证位置精度。再如车床主轴的前锥孔与主轴支承轴颈间有严格的同轴度要求,加工时就是先以轴颈外圆为定位基准加工锥孔,再以锥孔为定位基准加工外圆,如此反复多次,最终达到加工要求。这都是互为基准的典型实例。(5) 便于装夹原则 所选精基准应保证工件安装可靠,夹具设计简单、操作方便4.4加工阶段的划分那些加工质量要求较高或较复杂的零件,通常将整个工艺路线划分为以下几个阶段: (1)粗加工阶段主要任务是切除各表面上的大部分余量,其关键问题是提高生产率。 (2)半精加工阶段完成次要表面的加工,并为主要表面的精加工做准备。 (3)精加工阶段保证各主要表面达到图样要求,其主要问题是如何保证加工质量。 (4)光整加工阶段对于表面粗糙度要求很细和尺寸精度要求很高的表面,还需要进行光整加工阶段。这个阶段的主要目的是提高表面质量,一般不能用于提高形状精度和位置精度。常用的加工方法有金刚车(镗)、研磨、珩磨、超精加工、镜面磨、抛光及无屑加工等。 划分加工阶段的原因: (1)保证加工质量粗加工时,由于加工余量大,所受的切削力、夹紧力也大,将引起较大的变形,如果不划分阶段连续进行粗精加工,上述变形来不及恢复,将影响加工精度。所以,需要划分加工阶段,使粗加工产生的误差和变形,通过半精加工和精加工予以纠正,并逐步提高零件的精度和表面质量。 (2)合理使用设备粗加工要求采用刚性好、效率高而精度较低的机床,精加工则要求机床精度高。划分加工阶段后,可避免以精干粗,可以充分发挥机床的性能,延长使用寿命。 (3)便于安排热处理工序,使冷热加工工序配合的更好粗加工后,一般要安排去应力的时效处理,以消除内应力。精加工前要安排淬火等最终热处理,其变形可以通过精加工予以消除。 (4)有利于及早发现毛坯的缺陷(如铸件的砂眼气孔等)粗加工时去除了加工表面的大部分余量,若发现了毛坯缺陷,及时予以报废,以免继续加工造成工时的浪费。 应当指出:加工阶段的划分不是绝对的,必须根据工件的加工精度要求和工件的刚性来决定。一般说来,工件精度要求越高、刚性越差,划分阶段应越细;当工件批量小、精度要求不太高、工件刚性较好时也可以不分或少分阶段;重型零件由于输送及装夹困难,一般在一次装夹下完成粗精加工,为了弥补不分阶段带来的弊端,常常在粗加工工步后松开工件,然后以较小的夹紧力重新夹紧,再继续进行精加工工步。 4.5顺序的安排(1)切削加工顺序的安排先粗后精先安排粗加工,中间安排半精加工,最后安排精加工和光整加工。 先主后次先安排零件的装配基面和工作表面等主要表面的加工,后安排如键槽、紧固用的光孔和螺纹孔等次要表面的加工。由于次要表面加工工作量小,又常与主要表面有位置精度要求,所以一般放在主要表面的半精加工之后,精加工之前进行。 先面后孔对于箱体、支架、连杆、底座等零件,先加工用作定位的平面和孔的端面,然后再加工孔。这样可使工件定位夹紧稳定可靠,利于保证孔与平面的位置精度,减小刀具的磨损,同时也给孔加工带来方便。 基面先行用作精基准的表面,要首先加工出来。所以,第一道工序一般是进行定位面的粗加工和半精加工(有时包括精加工),然后再以精基面定位加工其它表面。例如,轴类零件顶尖孔的加工。 (2)热处理工序的安排 处理可以提高材料的力学性能,改善金属的切削性能以及消除残余应力。在制订工艺路线时,应根据零件的技术要求和材料的性质,合理地安排热处理工序。 退火与正火退火或正火的目的是为了消除组织的不均匀,细化晶粒,改善金属的加工性能。对高碳钢零件用退火降低其硬度,对低碳钢零件用正火提高其硬度,以获得适中的较好的可切削性,同时能消除毛坯制造中的应力。退火与正火一般安排在机械加工之前进行。 时效处理以消除内应力、减少工件变形为目的。为了消除残余应力,在工艺过程中需安排时效处理。对于般铸件,常在粗加工前或粗加工后安排一次时效处理;对于要求较高的零件,在半精加工后尚需再安排一次时效处理;对于一些刚性较差、精度要求特别高的重要零件(如精密丝杠、主轴等),常常在每个加工阶段之间都安排一次时效处理。 调质对零件淬火后再高温回火,能消除内应力、改善加工性能并能获得较好的综合力学性能。一般安排在粗加工之后进行。对一些性能要求不高的零件,调质也常作为最终热处理。 淬火、渗碳淬火和渗氮它们的主要目的是提高零件的硬度和耐磨性,常安排在精加工(磨削)之前进行,其中渗氮由于热处理温度较低,零件变形很小,也可以安排在精加工之后。 (3)辅助工序的安排 检验工序是主要的辅助工序,除每道工序由操作者自行检验外,在粗加工之后,精加工之前,零件转换车间时,以及重要工序之后和全部加工完毕、进库之前,一般都要安排检验工序。除检验外,其它辅助工序有:表面强化和去毛刺、倒棱、清洗、防锈等。正确地安排辅助工序是十分重要的。如果安排不当或遗漏,将会给后续工序和装配带来困难,甚至影响产品的质量,所以必须给予重视。4.6的集中与分散 过以上所述,零件加工的工步顺序已经排定,如何将这些工步组成工序,就需要考虑采用工序集中还是工序分散的原则。 (1)工序集中就是将零件的加工集中在少数几道工序中完成,每道工序加工内容多,工艺路线短。其主要特点是: 可以采用高效机床和工艺装备,生产率高; 减少了设备数量以及操作工人人数和占地面积,节省人力、物力; 减少了工件安装次数,利于保证表面间的位置精度; 采用的工装设备结构复杂,调整维修较困难,生产准备工作量大。 (2)工序分散工序分散就是将零件的加工分散到很多道工序内完成,每道工序加工的内容少,工艺路线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版高中生物选择性必修1知识点背记讲义
- 酸性燃料电池课件
- 老年人临终关怀护理
- 人教版八年级英语下册专项复习:首字母填空(含答案)
- 热点20 减负-2021年中考英语作文热点精彩范文
- CN120198048A 基于集装箱物流的多式联运端到端供应链协同管理方法
- 配镜专业知识培训课件
- 配网设计基础知识培训
- 2025版燃气设施改造升级与安全检测服务合同
- 2025版室内批白施工智能化管理与服务合同
- 未成年人违法犯罪警示教育
- 高一学生手册考试试题及答案
- 廉政参观活动方案
- 律师事务所客户数据安全管理制度
- 孕妇学校健康教育课件
- 医务人员艾滋病知识培训
- erp权限管理制度
- 2025年重庆中考道德与法治试卷真题解读答案讲解(课件)
- 厦门垃圾分类题目及答案
- 湘美版(2024)美术一年级上册第1课 桑叶和蚕宝宝 课件T内嵌视频
- (中职)仪器分析技术(项目1-15)配套教材课件完整版电子教案
评论
0/150
提交评论