




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第18章 勾股定理2010年整章测试一、选择题(共7小题,每小题3分,满分21分)1下列各组数是勾股数的为()A2,4,5B8,15,17C11,13,15D4,5,62若a,b,c表示ABC的三边,且满足+|a3|+(b4)2=0,则ABC的形状是()A等腰三角形B直角三角形C等腰直角三角形D等边三角形3下列说法中错误的是()A在ABC中,若A=CB,则ABC是直角三角形B在ABC中,若a2+b2=c2,则ABC是直角三角形C在ABC中,若A,B,C的度数比是7:3:4,则ABC是直角三角形D在ABC中,若三边长a:b:c=2:2:3,则ABC是直角三角形4一个圆桶底面直径为10cm,高24cm,则桶内所能容下的最长木棒为()A20cmB24cmC26cmD30cm5如图所示,直角三角形ABC中,C=90,AB=13cm,BC=5cm,则以AC为直径的半圆(阴影部分)的面积为()A18B18C36D366两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm,另一只朝左挖,每分钟挖6cm,10分钟后,两只小鼹鼠相距()A50cmB100cmC140cmD80cm7(2003山东)2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的勾股圆方图,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是13,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为()A13B19C25D169二、填空题(共10小题,每小题2分,满分20分)8RtABC中,C=90,AC=8cm,AB=10cm,则ABC的面积为 _cm2,最长边上的高等于 _cm9如图,已知ABC中,ACB=90,以ABC的各边为边在ABC外作三个正方形,S1、S2、S3分别表示这三个正方形的面积,若S1=81,S2=225,则S3=_10如图,P是正方形ABCD内一点,将ABP移到CBP位置,若BP=3,则PP的长为_11“亡羊补牢,为时不晚”丁丁爸爸要在高0.9米,宽1.2米的栅栏门的相对角顶点加固一个木板,这条木板需_米长12(2006安徽)如图,直线L过正方形ABCD的顶点B,点A、C到直线L的距离分别是1和2,则正方形的边长是_13如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯当电工师傅沿梯上去修路灯时,梯子下滑到了B处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯_米14(2003三明)一张直角三角形的纸片,像如图所示那样折叠,使两个锐角顶点A、B重合若B=30,AC=,则折痕DE的长等于_15(2005十堰)如图中的螺旋由一系列直角三角形组成,则第n个三角形的面积为_16已知,如图所示,RtABC的周长为4+2,斜边AB的长为2,则RtABC的面积为_17已知mn,以m2n2,2mn,m2+n2为边的三角形是 _三角形三、解答题(共10小题,满分56分)18如图,一次“台风”过后,一根旗杆被台风从离地面9米处吹断,倒下的旗杆的顶端落在离旗杆底部12米处,那么这根旗杆被吹断前至少有多高?19如图,在一块用边长为20cm的地砖铺设的广场上,一只飞来的鸽子落在A点处,鸽子吃完小朋友洒在B、C处的鸟食,最少需要走多远?20“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)21小明要外出旅游,他带的行李箱长40cm,宽30cm,高60cm,一把70cm长的雨伞能否装进这个行李箱?22在ABC中,AB=13cm,BC=10cm,BC边上的中线AD=12cm求AC23已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量A=90,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?24如图,甲轮船以16海里/小时的速度离开港口O向东南方向航行,乙轮船同时同地向西南方向航行,已知他们离开港口一个半小时后分别到达B、A两点,且知AB=30海里,问乙轮船每小时航行多少海里?25如图所示,折叠长方形(四个角都是直角)的一边AD使点D落在BC边的点F处,已知AB=DC=8cm,AD=BC=10cm,求EC的长26将一根长24cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,如图所示,设筷子露出在杯子外面长为hcm,你能求出h的取值范围吗?27如图,已知长方体的长为AC=2cm,宽BC=1cm,高AA=4一只蚂蚁如果沿长方体的表面从A点爬到B点,那么沿哪条路最近?最短路程是多少?第18章 勾股定理2010年整章测试参考答案与试题解析一、选择题(共7小题,每小题3分,满分21分)1下列各组数是勾股数的为()A2,4,5B8,15,17C11,13,15D4,5,6考点:勾股数。分析:勾股数是应该符合a2+b2=c2的据此作答即可解答:解:A、22+42=2052,故不是;B、82+152=289=172,故是勾股数;C、112+132=290152,故不是;D、42+52=4162,故不是;故选B点评:要熟记常用勾股数:3,4,5;8,15,17;5,12,13,注勾股数还要是正整数2若a,b,c表示ABC的三边,且满足+|a3|+(b4)2=0,则ABC的形状是()A等腰三角形B直角三角形C等腰直角三角形D等边三角形考点:勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根。分析:利用非负数的性质,求得a,b,c的值,再由勾股定理进行解答即可解答:解:因为a,b,c满足+|a3|+(b4)2=0,所以c5=0,c=5;a3=0,a=3;b4=0,b=4,则32+42=52,即a2+b2=c2,ABC的形状是直角三角形故选B点评:本题考查了非负数的性质初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根)当它们相加和为0时,必须满足其中的每一项都等于0根据这个结论可以求解这类题目3下列说法中错误的是()A在ABC中,若A=CB,则ABC是直角三角形B在ABC中,若a2+b2=c2,则ABC是直角三角形C在ABC中,若A,B,C的度数比是7:3:4,则ABC是直角三角形D在ABC中,若三边长a:b:c=2:2:3,则ABC是直角三角形考点:勾股定理的逆定理;三角形内角和定理。分析:根据三角形内角和等于180及勾股定理的逆定理可知解答:解:A、在ABC中,若A=CB,则C=90,则ABC是直角三角形,故正确;B、根据勾股定理的逆定理可知ABC是直角三角形,故正确;C、在ABC中,若A,B,C的度数比是7:3:4,则A=90,则ABC是直角三角形,故正确;D、22+22=832,故不是直角三角形,故错误故选D点评:本题考查三角形内角和定理和勾股定理的逆定理的应用判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可4一个圆桶底面直径为10cm,高24cm,则桶内所能容下的最长木棒为()A20cmB24cmC26cmD30cm考点:勾股定理的应用。分析:桶内容下的木棒最长时,木棒、圆桶的直径、桶高三者正好构成一个直角三角形,根据勾股定理即可求解解答:解:根据勾股定理得木棒长是:=26cm故选C点评:本题是勾股定理在实际生活中的应用,善于观察题目的信息是解题以及学好数学的关键5如图所示,直角三角形ABC中,C=90,AB=13cm,BC=5cm,则以AC为直径的半圆(阴影部分)的面积为()A18B18C36D36考点:勾股定理。分析:根据勾股定理求得AC的长,再进一步根据半圆的面积公式计算半圆的面积解答:解:C=90,AB=13cm,BC=5cm,AC=12cm则以AC为直径的半圆(阴影部分)的面积=36=18(cm2)故选B点评:此题要熟练运用勾股定理进行计算,熟悉半圆的面积公式6两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm,另一只朝左挖,每分钟挖6cm,10分钟后,两只小鼹鼠相距()A50cmB100cmC140cmD80cm考点:勾股定理的应用。专题:应用题。分析:首先根据题意知:它们挖的方向构成了直角再根据路程=速度时间,根据勾股定理即可求解解答:解:由图可知,AC=810=80cm,BC=610=60cm,由勾股定理得,AB=100cm故选B点评:本题考查了勾股定理的应用,首先要正确理解题意,画出正确的图形,再熟练运用勾股定理进行计算7(2003山东)2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的勾股圆方图,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是13,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为()A13B19C25D169考点:勾股定理。分析:根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而不难求得(a+b)2解答:解:(a+b)2=a2+b2+2ab=大正方形的面积+四个直角三角形的面积和=13+(131)=25故选C点评:注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系二、填空题(共10小题,每小题2分,满分20分)8RtABC中,C=90,AC=8cm,AB=10cm,则ABC的面积为 24cm2,最长边上的高等于 4.8cm考点:勾股定理。分析:根据勾股定理求得BC的长,即可求得三角形的面积;根据三角形的面积,即可求得其最长边上的高解答:解:C=90,AC=8cm,AB=10cm,BC=6cmABC的面积为86=24(cm2);最长边上的高=4.8(cm)点评:此题考查了勾股定理和直角三角形的面积公式直角三角形斜边上的高等于两条直角边的乘积除以斜边9如图,已知ABC中,ACB=90,以ABC的各边为边在ABC外作三个正方形,S1、S2、S3分别表示这三个正方形的面积,若S1=81,S2=225,则S3=144考点:勾股定理。分析:根据正方形的面积公式结合勾股定理,知:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积解答:解:根据题意得:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,则S3=22581=144点评:能够根据勾股定理以及正方形的面积公式证明结论:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积直接运用此结论可以简便计算10如图,P是正方形ABCD内一点,将ABP移到CBP位置,若BP=3,则PP的长为考点:旋转的性质;勾股定理;正方形的性质。专题:计算题。分析:因为将ABP移到CBP是将ABP顺时针旋转90,得到等腰直角三角形,根据勾股定理即可解答解答:解:由旋转的性质可知,PBP=90,则PBP为等腰直角三角形,BP=BP,BP=3,PP=3故答案为:3点评:此题考查了旋转的性质,观察得出ABP经旋转得到CBP,然后利用勾股定理是解题的关键11“亡羊补牢,为时不晚”丁丁爸爸要在高0.9米,宽1.2米的栅栏门的相对角顶点加固一个木板,这条木板需1.5米长考点:勾股定理的应用。分析:根据题意,栅栏门为长方形ABCD,其中AB=1.2米,BC=0.9米,根据勾股定理即可求出对角线AC的长度,也就求出了对角顶点加固一个木板的长度解答:解:如图,栅栏门为长方形ABCD,其中AB=1.2米,BC=0.9米,连接AC,在RtABC中,AC=1.5米故填空答案:1.5点评:本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键12(2006安徽)如图,直线L过正方形ABCD的顶点B,点A、C到直线L的距离分别是1和2,则正方形的边长是考点:勾股定理;直角三角形全等的判定。分析:两直角三角形的斜边是正方形的两边,相等;有一直角对应相等;再根据正方形的角为直角,可得到有一锐角对应相等,易得两直角三角形全等,由三角形全等的性质可把2,1,正方形的边长组合到直角三角形内得正方形边长为解答:解:如图,四边形ABCD是正方形,AB=CD,ABE+CBF=90,而AMMN,CNBN,BAM=CBN,AMB=CNB=90,AMBBCN,BM=CN,AB为点评:本题考查勾股定理及三角形全等的性质应用13如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯当电工师傅沿梯上去修路灯时,梯子下滑到了B处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯2米考点:勾股定理的应用。专题:应用题。分析:根据题意,将梯子下滑的问题转化为直角三角形的问题解答解答:解:在直角三角形AOB中,根据勾股定理,得:OB=6m,根据题意,得:OB=6+2=8m又梯子的长度不变,在RtAOB中,根据勾股定理,得:OA=6m则AA=86=2m点评:熟练运用勾股定理,注意梯子的长度不变14(2003三明)一张直角三角形的纸片,像如图所示那样折叠,使两个锐角顶点A、B重合若B=30,AC=,则折痕DE的长等于1考点:翻折变换(折叠问题)。分析:利用特殊角度构成特殊三角形,运用三角函数求解解答:解:由折叠的性质可得,点E是等腰三角形DAB的底边上的中点根据等腰三角形的性质知,DEABB=30,AC=,AB=2,BE=DE=BEtan30=1点评:本题利用了:折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;等腰三角形的判定和性质,锐角三角函数的概念求解15(2005十堰)如图中的螺旋由一系列直角三角形组成,则第n个三角形的面积为考点:勾股定理。专题:规律型。分析:根据勾股定理,逐一进行计算,从中寻求规律,进行解答解答:解:根据勾股定理:第一个三角形中:OA12=1+1,S1=112;第二个三角形中:OA22=OA12+1=1+1+1,S2=OA112=12;第三个三角形中:OA32=OA22+1=1+1+1+1,S3=OA212=12;第n个三角形中:Sn=12=点评:本题主要考查了勾股定理的应用,要注意图中三角形的面积的变化规律16已知,如图所示,RtABC的周长为4+2,斜边AB的长为2,则RtABC的面积为1考点:勾股定理。分析:根据已知列方程组,再根据完全平方公式即可求得两直角边的积,从而不难求得三角形的面积解答:解:设AC=a,BC=b,(a+b)2=a2+b2+2ab=12+2ab=16,ab=2,RtABC的面积为ab=2=1故答案为:1点评:此题考查了勾股定理及完全平方公式的综合运用17已知mn,以m2n2,2mn,m2+n2为边的三角形是 直角三角形考点:勾股定理的逆定理。分析:欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可解答:解:(m2n2)2+(2mn)2=m4+n42m2n2+4m2n2=m4+n4+2m2n2=(m2+n2)2,该三角形是直角三角形点评:本题考查勾股定理的逆定理的应用判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可三、解答题(共10小题,满分56分)18如图,一次“台风”过后,一根旗杆被台风从离地面9米处吹断,倒下的旗杆的顶端落在离旗杆底部12米处,那么这根旗杆被吹断前至少有多高?考点:勾股定理的应用。专题:应用题。分析:根据旗杆未断部分与折断部分及地面正好组成直角三角形,利用勾股定理解答即可解答:解:由勾股定理得斜边为=15米,则原来的高度为9+15=24米点评:此题主要考查学生对勾股定理的运用,比较简单19如图,在一块用边长为20cm的地砖铺设的广场上,一只飞来的鸽子落在A点处,鸽子吃完小朋友洒在B、C处的鸟食,最少需要走多远?考点:勾股定理的应用。专题:应用题。分析:解答此题要先找出AB、BC所在的长方形,数出小格的个数,再计算解答:解:每一块地砖的长度为20cmA、B所在的长方形长为204=80cm,宽为203=60cmAB=100又B、C所在的长方形长为2012=240cm,宽为205=100cmBC=260,AB+BC=100+260=360cm点评:解答本题的关键是找出AB、BC所在的长方形,根据方格的长度计算出长方形的长和宽,利用勾股定理计算AB、BC之间的距离20“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)考点:勾股定理的应用。专题:应用题。分析:本题求小汽车是否超速,其实就是求BC的距离,直角三角形ABC中,有斜边AB的长,有直角边AC的长,那么BC的长就很容易求得,根据小汽车用2s行驶的路程为BC,那么可求出小汽车的速度,然后再判断是否超速了解答:解:在RtABC中,AC=30m,AB=50m;据勾股定理可得:(m)小汽车的速度为v=20m/s=203.6km/h=72km/h;72km/h70km/h;这辆小汽车超速行驶点评:本题是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决要注意题目中单位的统一21小明要外出旅游,他带的行李箱长40cm,宽30cm,高60cm,一把70cm长的雨伞能否装进这个行李箱?考点:勾股定理的应用。分析:如图,根据已知条件知道AB=40cm,BC=30cm,CD=60cm,连接AD,求出AD的长度和雨伞的长度比较大小即可判断一把70cm长的雨伞能否装进这个行李箱解答:解:如图,根据已知条件知道AB=40cm,BC=30cm,CD=60cm,连接AD,在RtABC中,AC=50cm,在RtADC中,AD=70,能装进行李箱点评:此题首先能根据题意正确画出图形,然后根据图形隐含条件利用勾股定理即可解决问题22在ABC中,AB=13cm,BC=10cm,BC边上的中线AD=12cm求AC考点:勾股定理的逆定理。分析:根据勾股定理的逆定理可知BC上的中线AD同时是BC上的高线,根据勾股定理求出AC的长,解答:解:AD是BC上的中线,AB=13cm,BC=10cm,AD=12cm,BD=CD=BC=5,52+122=132,故ABD是直角三角形,AD垂直平分BCAC=AB=13cm点评:本题考查勾股定理及勾股定理的逆定理的应用解题关键是得出中线AD是BC上的高线23已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量A=90,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?考点:勾股定理的应用。专题:应用题。分析:仔细分析题目,需要求得四边形的面积才能求得结果连接BD,在直角三角形ABD中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC为一直角三角形,DC为斜边;由此看,四边形ABCD由RtABD和RtDBC构成,则容易求解解答:解:连接BD,在RtABD中,BD2=AB2+AD2=32+42=52,在CBD中,CD2=132BC2=122,而122+52=132,即BC2+BD2=CD2,DBC=90,S四边形ABCD=SBAD+SDBC=,=36所以需费用36200=7200(元)点评:通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单24如图,甲轮船以16海里/小时的速度离开港口O向东南方向航行,乙轮船同时同地向西南方向航行,已知他们离开港口一个半小时后分别到达B、A两点,且知AB=30海里,问乙轮船每小时航行多少海里?考点:勾股定理的应用。专题:应用题。分析:根据题目提供的方位角判定AOBO,然后根据甲轮船的速度和行驶时间求得OB的长,利用勾股定理求得OA的长,除以时间即得到乙轮船的行驶速度解答:解:甲轮船向东南方向航行,乙轮船向西南方向航行,AOBO,甲轮船以16海里/小时的速度航行了一个半小时,OB=161.5=24海里,AB=30海里,在RtAOB中,AO=18,乙轮船航行的速度为:181.5=12海里点评:本题考查了勾股定理的应用,解决本题的关键是根据题目提供的方位角判定直角三角形25如图所示,折叠长方形(四个角都是直角)的一边AD使点D落在BC边的点F处,已知AB=DC=8cm,AD=BC=10cm,求EC的长考点:翻折变换(折叠问题);矩形的性质。专题:计算题。分析:想求得EC长,利用勾股定理计算,需求得FC长,那么就需求出BF的长,利用勾股定理即可求得BF长解答:解:设EC的长为xcm,(1分)DE=(8x)cm(2分)ADE折叠后的图形是AFE,AD=AF,D=AFE,DE=EF(3分)AD=BC=10cm,AF=AD=10cm(4分)又AB=8cm,在RtABF中,根据勾股定理,得AB2+BF2=AF282+BF2=102(5分)BF=6cm(6分)FC=B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校游泳池管理制度
- 学校自备水管理制度
- 学校饮水点管理制度
- 学生租赁车管理制度
- 宅急送服务管理制度
- 安全生产规管理制度
- 安监+风险管理制度
- 宋代酒专卖管理制度
- 定制化仓储管理制度
- 审核与评审管理制度
- GB/T 44579-2024热塑性塑料分集水器
- 民间非营利组织审计报告(模板)
- 专题06直角坐标系中三角形面积的相关问题(原卷版+解析)
- TQGCML 4301-2024 煤矿覆岩离层注浆充填开采设计施工及验收规范
- 《舞蹈鉴赏》期末考试复习题库(含答案)
- 河南天一大联考2024届高一数学第二学期期末考试试题含解析
- 人教版(2024新版)九年级上册化学:第四单元 课题3《物质组成的表示》教案教学设计
- 《建筑施工测量标准》JGJT408-2017
- 2024年广东省中考生物试卷附答案
- 合肥市瑶海区2022-2023学年七年级下学期期中历史试题【带答案】
- 湖南省长沙市雨花区2023-2024学年五年级下学期期末考试英语试题
评论
0/150
提交评论