




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
两个变量的线性相关 1 在一次对人体脂肪含量和年龄关系的研究中 研究人员获得了一组样本数据 根据上述数据 人体的脂肪含量与年龄之间有怎样的关系 2 散点图 两个变量的散点图中点的分布的位置是从左下角到右上角的区域 即一个变量值由小变大 另一个变量值也由小变大 我们称这种相关关系为正相关 二 两个变量的线性相关 3 思考 1 两个变量成负相关关系时 散点图有什么特点 两个变量的散点图中点的分布的位置是从左上角到右下角的区域 即一个变量值由小变大 而另一个变量值由大变小 我们称这种相关关系为负相关 2 你能举出一些生活中的变量成正相关或者负相关的例子吗 4 3 若两个变量散点图呈下图 它们之间是否具有相关关系 5 散点图 回归直线 如果散点图中点的分布从整体上看大致在一条直线附近 我们就称这两个变量之间具有线性相关关系 这条直线就叫做回归直线 这条回归直线的方程 简称为回归方程 6 方案一 采用测量的方法 先画一条直线 测量出各点到它的距离 然后移动直线 到达一个使距离之和最小的位置 测量出此时直线的斜率和截距 就得到回归方程 如何具体的求出回归方程 7 方案二 在图中选取两点画直线 使得直线两侧的点的个数基本相同 我们应该如何具体的求出这个回归方程呢 8 方案三 在散点图中多取几组点 确定几条直线的方程 分别求出各条直线的斜率和截距的平均数 将这两个平均数作为回归方程的斜率和截距 我们应该如何具体的求出这个回归方程呢 9 上述三种方案均有一定的道理 但可靠性不强 我们回到回归直线的定义 求回归方程的关键是如何用数学的方法来刻画 从整体上看 各点与直线的偏差最小 计算回归方程的斜率和截距的一般公式 其中 b是回归方程的斜率 a是截距 10 最小二乘法的公式的探索过程如下 设已经得到具有线性相关关系的变量的一组数据 x1 y1 x2 y2 xn yn 设所求的回归直线方程为Y bx a 其中a b是待定的系数 当变量x取x1 x2 xn时 可以得到Yi bxi a i 1 2 n 它与实际收集得到的yi之间偏差是yi Yi yi bxi a i 1 2 n 这样 用这n个偏差的和来刻画 各点与此直线的整体偏差 是比较合适的 11 12 问题归结为 a b取什么值时Q最小 即总体和最小 Q y1 bx1 a 2 y2 bx2 a 2 yn bxn a 2 13 先对a配方 14 再对b配方 15 我们可以用计算机来求回归方程 人体脂肪含量与年龄之间的规律 由此回归直线来反映 16 将年龄作为x代入上述回归方程 看看得出数值与真实值之间有何关系 17 若某人65岁 可预测他体内脂肪含量在37 1 0 577 65 0 448 37 1 附近的可能性比较大 但不能说他体内脂肪含量一定是37 1 18 例 假设关于某设备的使用年限x 年 和所支出的维修费用y 万元 有如下的统计资料 使用年限x 年 23456维修费用y 万元 2 23 85 56 57 0若资料知y x呈线性相关关系 试求 1 线性回归方程Y bx a的回归系数a b 2 估计使用年限为10年时 维修费用是多少 19 1 于是有b 112 3 5 4 5 90 5 4 2 1 23 a 5 1 23 4 0 08 2 回归方程为Y 1 23x 0 08 当x 10时 Y 12 38 万元 即估计使用10年时维护费用是12 38万元 20 小结 1 求样本数据的线性回归方程 可按下列步骤进行 第一步 计算平均数 第二步 求和 第三步 计算 第四步 写出回归方程 21 2 回归方程被样本数据惟一确定 各样本点大致分布在回归直线附近 对同一个总体 不同的样本数据对应不同的回归直线 所以回归直线也具有随机性 3 对于任意一组样本数据 利用上述公式都可求得 回归方程 如果这组数据不具有线性相关关系 即不存在回归直线 那么所得的 回归方程 是没有实际意义的 因此 对一组样本数据 应先作散点图 在具有线性相关关系的前提下再求回归方程 22 例1 有一个同学家开了一个小卖部 他为了研究气温对热饮销售的影响 经过统计 得到一个卖出的热饮杯数与当天气温的对比表 1 画出散点图 2 从散点图中发现气温与热饮销售杯数之间关系的一般规律 3 求回归方程 4 如果某天的气温是2摄氏度 预测这天卖出的热饮杯数 23 1 散点图 2 从图3 1看到 各点散布在从左上角到由下角的区域里 因此 气温与热饮销售杯数之间成负相关 即气温越高 卖出去的热饮杯数越少 24 3 从散点图可以看出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业银行2025本溪市秋招面试典型题目及参考答案
- 2025年3D打印的医疗应用
- 邮储银行2025南昌市秋招半结构化面试题库及参考答案
- 交通银行2025银川市秋招笔试创新题型专练及答案
- 邮储银行2025莆田市金融科技岗笔试题及答案
- 2025行业可持续发展路径研究
- 反担保协议正规版8篇
- 工商银行2025四平市秋招无领导模拟题角色攻略
- 班组岗位安全培训表模板课件
- 邮储银行2025鞍山市秋招群面模拟题及高分话术
- 广东工业大学年《电机学》期末试题及答案解析
- 解读《义务教育体育与健康课程标准(2022年版)》2022年体育与健康新课标专题PPT
- 2019版外研社高中英语必修三单词默写表
- 食堂合作协议范本食堂档口合作协议.doc
- 直接还原铁生产工艺
- 建筑识图题库及答案
- 《幂的运算》习题精选及答案
- 异质结TCO设备:RPD与PVD比较分析(2021年).doc
- PPT汇报评分表(共1页)
- ESD防静电培训教材.ppt
- 《春》复习课件
评论
0/150
提交评论