




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
两角和与差的三角函数 cos(+)=coscos-sinsin cos(-)=coscos+sinsin sin (+)=sincoscossin tan(+)=(tan+tan)/(1-tantan) tan(-)=(tan-tan)/(1+tantan) 和差化积公式: sin+sin=2sin(+)/2cos(-)/2 sin-sin=2cos(+)/2sin(-)/2 cos+cos=2cos(+)/2cos(-)/2 cos-cos=-2sin(+)/2sin(-)/2 积化和差公式: sincos=(1/2)sin(+)+sin(-) cossin=(1/2)sin(+)-sin(-) coscos=(1/2)cos(+)+cos(-) sinsin=-(1/2)cos(+)-cos(-) 倍角公式: sin(2)=2sincos=2/(tan+cot) cos(2)=(cos)2-(sin)2=2(cos)2-1=1-2(sin)2 tan(2)=2tan/(1-tan2) cot(2)=(cot2-1)/(2cot) sec(2)=sec2/(1-tan2) csc(2)=1/2*seccsc 三倍角公式: sin(3) = 3sin-4sin3 = 4sinsin(60+)sin(60-) cos(3) = 4cos3-3cos = 4coscos(60+)cos(60-) tan(3) = (3tan-tan3)/(1-3tan2) = tantan(/3+)tan(/3-) cot(3)=(cot3-3cot)/(3cot2-1) n倍角公式: sin(n)=ncos(n-1)sin-C(n,3)cos(n-3)sin3+C(n,5)cos(n-5)sin5- cos(n)=cosn-C(n,2)cos(n-2)sin2+C(n,4)cos(n-4)sin4- 半角公式: sin(/2)=(1-cos)/2) cos(/2)=(1+cos)/2) tan(/2)=(1-cos)/(1+cos)=sin/(1+cos)=(1-cos)/sin cot(/2)=(1+cos)/(1-cos)=(1+cos)/sin=sin/(1-cos) sec(/2)=(2sec/(sec+1) csc(/2)=(2sec/(sec-1) 辅助角公式: Asin+Bcos=(A2+B2)sin(+)(tan=B/A) Asin+Bcos=(A2+B2)cos(-)(tan=A/B) 万能公式 Sin (a) = (2tan (a/2)/ (1+tan2(a/2) cos (a)= (1-tan2(a/2)/(1+tan2(a/2) tan (a)= (2tan(a/2)/(1-tan2(a/2) 降幂公式 sin2=(1-cos(2)/2=versin(2)/2 cos2=(1+cos(2)/2=covers(2)/2 tan2=(1-cos(2)/(1+cos(2) 三角和的三角函数: sin(+)=sincoscos+cossincos+coscossin-sinsinsin cos(+)=coscoscos-cossinsin-sincossin-sinsincos tan(+)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan) 其它公式 两角和与差的三角函数 cos(+)=coscos-sinsin cos(-)=coscos+sinsin sin()=sincoscossin tan(+)=(tan+tan)/(1-tantan) tan(-)=(tan-tan)/(1+tantan) 和差化积公式: sin+sin=2sin(+)/2cos(-)/2 sin-sin=2cos(+)/2sin(-)/2 cos+cos=2cos(+)/2cos(-)/2 cos-cos=-2sin(+)/2sin(-)/2 积化和差公式: sincos=(1/2)sin(+)+sin(-) cossin=(1/2)sin(+)-sin(-) coscos=(1/2)cos(+)+cos(-) sinsin=-(1/2)cos(+)-cos(-) 倍角公式: sin(2)=2sincos=2/(tan+cot) cos(2)=(cos)2-(sin)2=2(cos)2-1=1-2(sin)2 tan(2)=2tan/(1-tan2) cot(2)=(cot2-1)/(2cot) sec(2)=sec2/(1-tan2) csc(2)=1/2*seccsc 三倍角公式: sin(3) = 3sin-4sin3 = 4sinsin(60+)sin(60-) cos(3) = 4cos3-3cos = 4coscos(60+)cos(60-) tan(3) = (3tan-tan3)/(1-3tan2) = tantan(/3+)tan(/3-) cot(3)=(cot3-3cot)/(3cot2-1) n倍角公式: sin(n)=ncos(n-1)sin-C(n,3)cos(n-3)sin3+C(n,5)cos(n-5)sin5- cos(n)=cosn-C(n,2)cos(n-2)sin2+C(n,4)cos(n-4)sin4- 半角公式: sin(/2)=(1-cos)/2) cos(/2)=(1+cos)/2) tan(/2)=(1-cos)/(1+cos)=sin/(1+cos)=(1-cos)/sin cot(/2)=(1+cos)/(1-cos)=(1+cos)/sin=sin/(1-cos) sec(/2)=(2sec/(sec+1) csc(/2)=(2sec/(sec-1) 辅助角公式: Asin+Bcos=(A2+B2)sin(+)(tan=B/A) Asin+Bcos=(A2+B2)cos(-)(tan=A/B) 万能公式 sin(a)= (2tan(a/2)/(1+tan2(a/2) cos(a)= (1-tan2(a/2)/(1+tan2(a/2) tan(a)= (2tan(a/2)/(1-tan2(a/2) 降幂公式 sin2=(1-cos(2)/2=versin(2)/2 cos2=(1+cos(2)/2=covers(2)/2 tan2=(1-cos(2)/(1+cos(2) 三角和的三角函数: sin(+)=sincoscos+cossincos+coscossin-sinsinsin cos(+)=coscoscos-cossinsin-sincossin-sinsincos tan(+)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan) 其它公式 1+sin(a)=(sin(a/2)+cos(a/2)2 1-sin(a)=(sin(a/2)-cos(a/2)2 csc(a)=1/sin(a) sec(a)=1/cos(a) cos30=sin60 sin30=cos60 推导公式 tan+cot=2/sin2 tan-cot=-2cot2 1+cos2=2cos2 1-cos2=2sin2 1+sin=sin(/2)+cos(/2)21+sin(a)=(sin(a/2)+cos(a/2)2 1-sin(a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于2025年的智能制造装备研发资金申请的智能制造产业技术创新能力评价报告
- 教师招聘之《幼儿教师招聘》考前冲刺练习试题附参考答案详解(巩固)
- 内蒙古呼伦贝尔农垦集团有限公司招聘笔试题库附答案详解(突破训练)
- 教师招聘之《幼儿教师招聘》能力提升试题打印含答案详解(轻巧夺冠)
- 2025年内蒙古呼伦贝尔农垦牙克石莫拐免渡河农牧场有限公司招聘笔试参考题库及完整答案详解1套
- 2025年禁毒知识知识题及答案
- 教师招聘之《小学教师招聘》题库检测试题打印附答案详解(轻巧夺冠)
- 教师招聘之《幼儿教师招聘》模拟题库附参考答案详解(基础题)
- 人民警察纪律作风方面存在的问题及整改措施
- 2025-2026年教师招聘之《幼儿教师招聘》通关题库附参考答案详解(巩固)
- 艺术设计学专业导论
- 七年级英语阅读理解专项练习题及答案
- 胆囊结石伴急性胆囊炎的护理查房
- 白蛋白在组织工程与再生医学中的应用
- 《国际探险公园设立规范》
- 闽教版2023版3-6年级全8册英语单词表
- 女性领导的培养和使用
- 巴林-奈曼(金沙)-阜新500千伏输变电工程水土保持方案
- 染料化学课件
- 垃圾运输车辆人员安全培训
- 计时工具发展史
评论
0/150
提交评论