已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
椭圆的几何性质教学目标:(1)知识与技能目标1掌握椭圆的范围,对称性,顶点,离心率等几何性质2能根据椭圆的几何性质对椭圆方程进行讨论,画椭圆图形(2)过程与方法目标培养学生观察、分析、抽象、概括的逻辑思维能力和运用数形结合思想解决实际问题的能力。教学重点:对椭圆的范围,对称性,顶点,离心率等几何性质的探索最后给出列表、描点画椭圆的简便方法教学过程: 一、复习提问师:在上节课中我们学习了椭圆的两个定义,请同学们回答其具体内容(教师指定学生回答,并引导其他学生进行更正)师:我们还学习了焦点分别在x轴和y轴上的椭圆的标准方程,请分别说出各是什么形式?生:当焦点在x轴上时方程为:当焦点在y轴上时方程为:二、课题引入“曲线与方程”是解析几何中最重要最基本的内容其中有两类基本问题:一是由曲线求方程,二是由方程画曲线前面由椭圆定义推导出椭圆的标准方程属于第一类问题,本节课将研究第二类问题,由椭圆方程画椭圆图形,为使列表描点更准确,避免盲目性,有必要先对椭圆的范围、对称性、截距进行讨论还应明确影响椭圆扁平程度的重要参数离心率三、探索新知(一)椭圆的基本性质(1)、范围1)、观察法:观察图1,看出横坐标的范围_-a,a_,看出纵坐标的范围_-b,b;2)代数法(利用方程): x的范围是_-a,a_同理,y的范围是_-b,b_(2)对称性1)、观察法:观察图1,椭圆可以对折吗?绕中心旋转180度后可以与原图重合吗?答:可以对折;绕中心旋转180度后可以与原图重合。2)、代数法(利用方程):把x=-x,y=-y代入方程,方程是否改变?因此椭圆既是 中心_对称图形又是_ 轴_对称图形。椭圆的对称轴有 2_条,分别是_x轴和y轴 ,对称中心是_原点.(3)、顶点因此,椭圆与它对称轴的交点叫椭圆的顶点,如图1线段A1A2,B1B2分别叫做椭圆的长轴和短轴,他们的长度分别为_2a,2b_,而_OA1或OA2,OB1或OB2_叫椭圆的长半轴长和短半轴长。图1.4、离心率把一个圆压扁就是椭圆这种说法是否正确?如何衡量椭圆的扁平程度呢?请观察动画回答问题:(1)、(ab0)保持a大小不变,改变b的大小,发现b越接近a,椭圆越_圆_(圆或扁)(2)、(ac0)保持a大小不变,改变c的大小,发现c越接近a,椭圆越_扁_(圆或扁)因为从椭圆的定义,a,c是最原始的量,更能刻画椭圆的性质,所以我们把称为椭圆的离心率,用e表示,即_ _,其中e的范围是_(0,1)_,e越接近1,椭圆越_扁 (圆或扁); e越接近0,椭圆越_圆_(圆或扁)。(3)、你能用三角函数的知识来解析(2)的结论吗?小结:a,b,c的值会改变椭圆性质吗?请根据以上的特例的性质概括椭圆的性质方程长轴长2a2a短轴长2b2b焦点坐标(-c,0) (c,0)(0,-c) (0,c)a,b,c关系顶点坐标在x轴上(-a,0) (a,0)在x轴上(-b,0) (b,0)在y轴上(0,-b) (0,b)在y轴上(0,-a) (0,a)离心率对称中心原点原点对称轴X轴,Y轴X轴,Y轴(二)典型例题例1求椭圆16x225y2400的长轴、短轴的长、离心率、焦点和顶点坐标,并用描点法画出它的图形 得:那么:长轴2a=10 短轴2b=8焦点:(-3,0)和(3,0)定点坐标:在x轴上(-5,0)(5,0)在y轴上(0,-4)(0,4)如图:1说出下列各椭圆的长轴、短轴的长,离心率、焦点坐标、顶点坐标,并画出草图(1) (2) 2下面每组的椭圆中,哪个更接近于圆?(1)8x27y256 与 8x2y256(2)9x24y236 与 8x24y236例2求长轴的长为16,离心率为,焦点在y轴上的椭圆的标准方程解:由于:2a=16,得:a=8; 由于:,得:c=4;又因为:, =64-16=48;所以:。练习:1说出下列各椭圆的长轴、短轴的长,离心率、焦点坐标、顶点坐标,并画出草图(1) (2) 2下面每组的椭圆中,哪个更接近于圆?(1)8x27y256 与 8x2y256(2)9x2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乳品干燥工改进强化考核试卷含答案
- 烟叶分级工考试题及答案
- 2025年台州玉环市国企招聘12人笔试考试备考试题及答案解析
- 2026年中国铁路哈尔滨局集团有限公司招聘普通高校大专(高职)学历毕业生1568人(二)考试笔试备考试题及答案解析
- 硝酸铵生产工岗前理论技术考核试卷含答案
- 2026天津市卫生健康委员会所属天津市环湖医院招聘57人笔试考试参考试题及答案解析
- 海绵钛准备拆装工岗前基础实操考核试卷含答案
- 2025广东深圳市优才人力资源有限公司(派至某国企)聘员招聘1人考试笔试参考题库附答案解析
- 2025浙江温州市泰顺县事业单位面向高校毕业生退役士兵招聘工作人员(第2号)考试笔试备考试题及答案解析
- 2025海南琼海供销运营管理有限公司招聘市场营销工作人员拟聘用人员笔试历年参考题库附带答案详解
- 工程信息编码规则-0205平台名称命名-副本
- SB/T 10752-2012马铃薯雪花全粉
- GB/T 5677-2018铸件射线照相检测
- BIM-建筑信息模型
- GA 139-2009灭火器箱
- 火力发电工程建设标准强制性条文执行表格锅炉分册
- 列车运行图课件
- 单位减少存档人员表
- 煤矿井下隔爆水棚安装设计说明
- 盘锦浩业芳烃抽提装置操作规程
- 人工智能在教育中的应用42页PPT课件
评论
0/150
提交评论