二次函数题卡.doc_第1页
二次函数题卡.doc_第2页
二次函数题卡.doc_第3页
二次函数题卡.doc_第4页
二次函数题卡.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

13. (2011浙江衢州,24,12分)已知两直线分别经过点,点,并且当两条直线同时相交于轴正半轴的点时,恰好有,经过点的抛物线的对称轴于直线交于点,如图所示.求点的坐标,并求出抛物线的函数解析式. 抛物线的对称轴被直线,抛物线,直线和轴依次截得三条线段,问这三条线段有何数量关系?请说明理由.当直线绕点旋转时,与抛物线的另一个交点为.请找出使为等腰三角形的点.简述理由,并写出点的坐标.(第24题)【答案】(1)解法1:由题意易知由题意,可设抛物线的函数解析式为.把的坐标分别代入,得解这个方程组,得抛物线的函数解析式为解法2:由勾股定理,得又由题意可设抛物线的函数解析式为把代入函数解析式得所以抛物线的函数解析式为(2)解法1:截得三条线段的数量关系为理由如下:可求得直线的解析式为,直线的解析式为,抛物线的对称轴为直线.由此可求得点的坐标为,点的坐标为,点的坐标为,点的坐标为.解法2:截得三条线段的数量关系为理由如下:由题意可知则可得.由顶点的坐标为得,(3)解法1:(i)以点为圆心,线段长为半径画圆弧,交抛物线于点,由抛物线的对称性可知点为点关于直线的对称点.所以点的坐标为,此时,为等腰三角形.(ii)当以点为圆心,线段长为半径画圆弧时,与抛物线交点为点和点,而三点在同一直线上,不能构成三角形.(iii)作线段的中垂线,由点是的中点,且,可知经过点, 此时,有点即点坐标为,使为等腰三角形.与抛物线的另一交点即为 综上所述,当点的坐标为 时,为等腰三角形解法2:当点的坐标分别为 理由如下:(i)链接,交抛物线于点,易知点的坐标为 .又点的坐标为,则 可求得,且,即为正三角形.为正三角形 当与抛物线交于点,即时,符合题意,此时点的坐标为(ii)连接,由,易知为等腰三角形当过抛物线顶点于点时,符合题意,此时点的坐标为.(iii)当点在抛物线对称轴右边时,只有点与点重合时,满足,但此时,三点在同一直线上,不能构成三角形.综上所述,当点的坐标分别为时,为等腰三角形. 14. (2011浙江绍兴,24,14分)抛物线与轴交于点,顶点为,对称轴与轴交于点.(1)如图1,求点的坐标及线段的长;(2)点在抛物线上,直线交轴于点,连接.若含45角的直线三角板如图2所示放置,其中,一个顶点与重合,直角顶点在上,另一顶点在上,求直线的函数解析式;若含30角的直角三角板一个顶点与点重合,直角顶点在直线上,另一个顶点在上,求点的坐标. 第24题图2第24题图1【答案】解:(1)把代入得,点,为对称轴,.(2)如图1,过点作轴,交轴于点,过点作,交于点,四边形为矩形,四边形为正方形,为等腰直角三角形,设直线的函数解析式为,直线上两点的坐标为,代入求得,直线的函数解析式为.当点3. (2011四川凉山州,28,12分)如图,抛物线与轴交于(,0)、(,0)两点,且,与轴交于点,其中是方程的两个根。(1)求抛物线的解析式;(2)点是线段上的一个动点,过点作,交于点,连接,当的面积最大时,求点的坐标;(3)点在(1)中抛物线上,点为抛物线上一动点,在轴上是否存在点,使以为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点的坐标,若不存在,请说明理由。yxOBMNCA28题图【答案】(1),。,。又抛物线过点、,故设抛物线的解析式为,将点的坐标代入,求得。抛物线的解析式为。(2)设点的坐标为(,0),过点作轴于点(如图(1)。点的坐标为(,0),点的坐标为(6,0),。,。,。 。当时,有最大值4。此时,点的坐标为(2,0)。(3)点(4,)在抛物线上,当时,点的坐标是(4,)。 如图(2),当为平行四边形的边时,(4,),。,。 如图(3),当为平行四边形的对角线时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论