



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
博文中学九年级数学教学案 主备人:齐波 审核:初三数学组 时间:2011.08.291.3矩形的判定教学目标1、会证明矩形的判定定理2、能运用矩形的判定定理进行计算与证明3、能运用矩形的性质定理与判定定理进行比较简单的综合推理与证明教学重难点:重点:矩形判定定理的证明难点:矩形判定定理的应用教学过程:一、回顾1、我们学过矩形的性质有哪些?2、具备什么的平行四边形是矩形?具备什么的四边形是矩形?请与同学交流。二、探索活动1问题一: 如图,在ABCD中,AC、BD相交于点O,AC=BD,ABCD是矩形吗?O分析:如图,要证ABCD是矩形,需证什么?为什么?请你写出过程。2问题二:三个角是直角的四边形是矩形吗?3小结:矩形的判定方法:(1)定义:有一个角是直角平行四边形是矩形。(2)定理1;对角线相等的平行四边形是矩形。定理2:有三个角是直角的四边形是矩形。4工人师傅在做门框或矩形零件时,常常测量它们的两条对角线是否相等来检查直角的精度,为什么?工人师傅做铝合金窗框分下面三个步骤进行: (1)先截出两对符合规格的铝合金窗料(如图),使AB=CD,EF=GH; (2)摆放成如图的四边形,则这时窗框的形状是_形,根据的数学原理是:_; (3)将直角尺靠紧窗框的一个角(如图),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图),说明窗框合格,这时窗框是_形,根据的数学原理是:_三、例题教学例1、已知:如图,矩形ABCD中,对角线AC、BD交于点O,点E、F、G、H分别在OA、OB、OC、OD上,且AE=BF=CG=DH求证:四边形EFGH是矩形例2、已知:如图,E、F、G、H分别是菱形ABCD的各边上的点,且AE=CF=CG=AH。求证:四边形是EFGH是矩形。例3图,在ABC中,点D在AB上,且ADCDBD,DE、DF分别是BDC、ADC的平分线,四边形FDEC是矩形吗?为什么?四小结:(1)矩形具有平行四边形的所有性质。(2)特有性质: (3)矩形的判定方法 课外练习1下列说法错误的是( ) (A)有一个内角是直角的平行四边形是矩形(B)矩形的四个角都是直角,并且对角线相等 (C)对角线相等的平行四边形是矩形 (D)有两个角是直角的四边形是矩形2平行四边形内角平分线能够围成的四边形是( ) (A)梯形 (B)矩形 (C)正方形 (D)不是平行四边形3如图,E,F,G,H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是( ) (A)一组对边平行而另一组对边不平行;(B)对角线相等(C)对角线互相垂直; (D)对角线互相平分 4如图,BO是RtABC斜边上的中线,延长BO至点D,使BO=DO,连结AD,CD,则四边形ABCD是矩形吗?请说明理由5已知:如图,BC是等腰BED底边ED上的高,四边形ABEC是平行四边形求证:四边形ABCD是矩形6,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AGDB交CB的延长线于G(1)求证:ADECBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论 7已知:如图,ABCD的四个内角平分线相交于点E、F、G、H。 求证:EG=FH8知:平行四边形ABCD的对角线AC、BD相交于O,AOB是等边三角形,AB4cm,求这个平行四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业安全理论培训课件
- 2025年高级导游综合知识考试冲刺模拟试题及答案
- 渠道管理(第二版)项目八 渠道冲突与管理制(教案)
- 出租公司安全培训材料课件
- 2025汽车交易定金合同
- 2025标准房屋租赁合同样本示例
- 村委会代办员考试试题及答案
- 2025关于合同工程师的劳动合同解除问题
- 脑科学品牌策略-洞察及研究
- 跨界协同机制创新-洞察及研究
- 陶板幕墙施工方案
- 2025年中国汉字听写大会汉字听写知识竞赛题库及答案(共六套)
- 《离婚经济补偿制度研究》13000字【论文】
- 《国内外绩效考核指标体系研究现状文献综述》4200字
- 天津第一中学2025-2025学年高三下学期3月月考英语试卷(含答案)
- 农场生态农业循环产业园项目方案书
- 合同权利转让合同范例
- 第二章第二节女性生殖系统生理课件
- 小学生红色经典故事100个红色经典故事【6篇】
- 沪教版(五四学制)(2024)六年级下册单词表+默写单
- 与国企合作开发零星地块框架合同协议书范本模板
评论
0/150
提交评论