




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2003级高等数学(A)(上)期末试卷一、单项选择题(每小题4分,共16分)1设函数由方程确定,则( )2曲线的渐近线的条数为( )3设函数在定义域内可导,的图形如右图所示,则导函数的图形为( )4微分方程的特解形式为( )二、填空题(每小题3分,共18分)12若,其中可导,则3设若导函数在处连续,则的取值范围是。4若,则的单增区间为,单减区间为.5曲线的拐点是6微分方程的通解为三、计算下列各题(每小题6分,共36分)1计算积分 2计算积分3. 计算积分 4. 计算积分5.设连续,在处可导,且,求6.求微分方程的通解四.(8分)求微分方程满足条件的特解五.(8分)设平面图形D由与所确定,试求D绕直线旋转一周所生成的旋转体的体积。六.(7分)设质量均匀分布的平面薄板由曲线C:与轴所围成,试求其质量七.(7分)设函数在上有连续的二阶导数,且,证明:至少存在一点,使得2004级高等数学(A)(上)期末试卷一. 填空题(每小题4分,共20分)1函数的间断点 是第 类间断点.2. 已知是的一个原函数,且,则 .3. .4. 设,则 .5. 设函数,则当 时,取得最大值.二. 单项选择题(每小题4分,共16分)1. 设当时,都是无穷小,则当时,下列表达式中不一定为无穷小的是 (A) (B) (C) (D)2. 曲线的渐近线共有 (A) 1条 (B) 2条 (C) 3条 (D) 4条3. 微分方程的一个特解形式为 (A) (B) (C) (D) 4. 下列结论正确的是 (A) 若,则必有.(B) 若在区间上可积,则在区间上可积.(C) 若是周期为的连续函数,则对任意常数都有.(D) 若在区间上可积,则在内必有原函数.三. (每小题7分,共35分)1. 2. 设函数是由方程所确定的隐函数,求曲线在点处的切线方程.3. 4. 5. 求初值问题 的解.四.(8分) 在区间上求一点,使得图中所示阴影部分绕轴旋转所得旋转体的体积最小. 五.(7分) 设 ,求证 .六.(7分) 设当时,可微函数满足条件且,试证: 当时,有 成立.七.(7分) 设在区间上连续,且,证明在区间内至少存在互异的两点,使.2005级高等数学(A)(上)期末试卷一填空题(本题共9小题,每小题4分,满分36分)1 ;2曲线的斜渐近线方程是 ;3设是由方程所确定的隐函数,则 ;4设在区间上连续,且,则 ;5设,则 ;6 ; 7曲线相应于的一段弧长可用积分 表示; 8已知与分别是微分方程的两个特解,则常数 ,常数 ;9是曲线以点为拐点的 条件。二计算下列各题(本题共4小题,每小题7分,满分28分)1设,求2 3 4三(本题满分9分)设有抛物线,试确定常数、的值,使得(1)与直线相切;(2)与轴所围图形绕轴旋转所得旋转体的体积最大。四(本题共2小题,满分14分) 1(本题满分6分)求微分方程的通解。2(本题满分8分)求微分方程满足初始条件的特解。五(本题满分7分) 第4页 试证:(1)设,方程在时存在唯一的实根;(2)当时,是无穷小量,且是与等价的无穷小量。六(本题满分6分)证明不等式:,其中是大于的正整数。2006级高等数学(A)(上)期末试卷一.填空题(本题共9小题,每小题4分,满分36分)1 ; 2曲线在对应的点处的切线方程为 ;3函数在区间 内严格单调递减;4设是由方程所确定的隐函数,则 ; 5 ;6设连续,且,已知,则 ;7已知在任意点处的增量,当时,是的高阶无穷小,已知,则;8曲线的斜渐近线方程是 ;9若二阶线性常系数齐次微分方程有两个特解,则该方程为 .二.计算题(本题共4小题,每小题7分,满分28分)1计算不定积分 2计算定积分 3计算反常积分 4设 ,求 三(本题满分7分)求曲线自到一段弧的长度。 (第3页)四(本题共2小题,第1小题7分,第2小题9分,满分16分)1求微分方程的通解。2求微分方程的特解,使得该特解在原点处与直线相切。五(本题满分7分)设,求积分的最大值。 (第4页)六(本题满分6分)设函数在上存在二阶连续导数,且,证明:至少存在一点,使得 。2007级高等数学(A)(上)期末试卷一.填空题(本题共9小题,每小题4分,满分36分)1;2设,则;3已知,则;4对数螺线在对应的点处的切线方程是;5设是由方程确定的隐函数,则的单调增加区间是,单调减少区间是;6曲线的拐点坐标是,渐进线方程是;7;8 ; 9二阶常系数线性非齐次微分方程的特解形式为.二.计算下列积分(本题共3小题,每小题7分,满分21分)10. 11 12。三(13)(本题满分8分)设,.(1)问是否为在内的一个原函数?为什么?(2)求.四(14)(本题满分7分)设,求.五(15)(本题满分6分)求微分方程的通解.六(16)(本题满分8分)设、满足,且,求.七(17)(本题满分8分) 设直线与抛物线所围成的图形面积为,它们与直线所围成的图形面积为.(1)试确定的值,使达到最小,并求出最小值.(2)求该最小值所对应的平面图形绕轴旋转一周所得旋转体的体积.八(18)(本题满分6分)设,求证:当时,.2008级高等数学(A)(上)期末试卷一.填空题(本题共9小题,每小题4分,满分36分)1函数的单调增加区间为 ;2已知,则 ;3曲线的拐点是 ;4曲线的斜渐近线的方程是 ;5二阶常系数线性非齐次微分方程的特解形式是 ;6设是常数,若对,有,则 ;7 ;8设是连续函数,且,则 ; 9设,则 .二.按要求计算下列各题(本题共5小题,每小题6分,满分30分)10 11. 12已知的一个原函数为,求 13设,求常数、,使得。14。三(15)(本题满分8分)求微分方程满足初始条件,的特解.四(16)(本题满分7分)设函数在区间上连续,且恒取正值,若对,在上的积分(平)均值等于与的几何平均值,试求的表达式.五(17)(本题满分7分) 在平面上将连接原点和点的线段(即区间)作等分,分点记作,过作抛物线的切线,切点为,(1)设三角形的面积为,求;(2)求极限.六(18)(本题满分6分)试比较与的大小,并给出证明.(注:若通过比较这两个数的近似值确定大小关系,则不得分)七(19)(本题满分6分)设在区间上连续可导,求证: .2009级高等数学(A)(上)期末试卷1函数的定义域是 ,值域是 ;2设,当 时,在处连续;3曲线的斜渐进线的方程是 ;4 ;5函数的极大值点是 ;6 ; 7设是由所确定的函数,则 ;8曲线族(,为任意常数)所满足的微分方程是 ; 9 .二.按要求计算下列各题(本题共5小题,每小题6分,满分30分)10 11. 12 1314。设,计算.三(15)(本题满分8分)求微分方程满足初始条件,的特解.四(16)(本题满分8分)设函数在区间上可导,在内恒取正值,且满足,又由曲线与直线所围成的图形的面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电镀工职业资格考前培训考核试卷及答案
- 缝制机械装配工岗位职业健康及安全技术规程
- 硅晶片抛光工配送路线优化建议考核试卷及答案
- 泵装配调试工团队目标达成贡献考核试卷及答案
- 业务知识培训专业术语课件
- 湖北省武汉市十四中学2026届数学七上期末教学质量检测试题含解析
- 2026届重市庆南开中学数学七年级第一学期期末达标测试试题含解析
- 专职司机汽车知识培训课件
- 脑洞英语语法系列之疑问词课件完整版
- 2026届江苏省江阴市华士片、澄东片数学九上期末检测模拟试题含解析
- 教师晋升答辩常见问题汇编
- 新加坡安全培训题库及答案解析
- (人教A版)选择性必修一数学高二上册 第一章 空间向量与立体几何(A卷·知识通关练+B卷提升练习)(原卷版)
- 2025煤矿安全规程解读
- 护理伦理与法律
- (2025年)【辅警协警】笔试模拟考试试题含答案
- 急性阑尾炎护理诊断及措施
- 中小学教师职称评审讲课答辩英语学科全英答辩题目汇编(带汉语翻译)
- 果树技术员(高级)考试题及答案(新版)
- 红木文化智慧树知到答案2024年广西大学
- FDM打印精度分析
评论
0/150
提交评论